Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp20u Structured version   Visualization version   GIF version

Theorem dp20u 30289
Description: Add a zero in the tenths (lower) place. (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypothesis
Ref Expression
dp20u.1 𝐴 ∈ ℕ0
Assertion
Ref Expression
dp20u 𝐴0 = 𝐴

Proof of Theorem dp20u
StepHypRef Expression
1 df-dp2 30283 . 2 𝐴0 = (𝐴 + (0 / 10))
2 10nn0 11922 . . . . . 6 10 ∈ ℕ0
32nn0rei 11712 . . . . 5 10 ∈ ℝ
43recni 10446 . . . 4 10 ∈ ℂ
5 0re 10433 . . . . 5 0 ∈ ℝ
6 10pos 11921 . . . . 5 0 < 10
75, 6gtneii 10544 . . . 4 10 ≠ 0
8 div0 11121 . . . 4 ((10 ∈ ℂ ∧ 10 ≠ 0) → (0 / 10) = 0)
94, 7, 8mp2an 679 . . 3 (0 / 10) = 0
109oveq2i 6981 . 2 (𝐴 + (0 / 10)) = (𝐴 + 0)
11 dp20u.1 . . . 4 𝐴 ∈ ℕ0
1211nn0cni 11713 . . 3 𝐴 ∈ ℂ
1312addid1i 10619 . 2 (𝐴 + 0) = 𝐴
141, 10, 133eqtri 2800 1 𝐴0 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1507  wcel 2048  wne 2961  (class class class)co 6970  cc 10325  0cc0 10327  1c1 10328   + caddc 10330   / cdiv 11090  0cn0 11700  cdc 11904  cdp2 30282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-dec 11905  df-dp2 30283
This theorem is referenced by:  rpdp2cl2  30294  dp0u  30312  1mhdrd  30327  hgt750lem2  31532
  Copyright terms: Public domain W3C validator