Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp20u Structured version   Visualization version   GIF version

Theorem dp20u 32601
Description: Add a zero in the tenths (lower) place. (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypothesis
Ref Expression
dp20u.1 𝐴 ∈ ℕ0
Assertion
Ref Expression
dp20u 𝐴0 = 𝐴

Proof of Theorem dp20u
StepHypRef Expression
1 df-dp2 32595 . 2 𝐴0 = (𝐴 + (0 / 10))
2 10nn0 12725 . . . . . 6 10 ∈ ℕ0
32nn0rei 12513 . . . . 5 10 ∈ ℝ
43recni 11258 . . . 4 10 ∈ ℂ
5 0re 11246 . . . . 5 0 ∈ ℝ
6 10pos 12724 . . . . 5 0 < 10
75, 6gtneii 11356 . . . 4 10 ≠ 0
8 div0 11932 . . . 4 ((10 ∈ ℂ ∧ 10 ≠ 0) → (0 / 10) = 0)
94, 7, 8mp2an 691 . . 3 (0 / 10) = 0
109oveq2i 7431 . 2 (𝐴 + (0 / 10)) = (𝐴 + 0)
11 dp20u.1 . . . 4 𝐴 ∈ ℕ0
1211nn0cni 12514 . . 3 𝐴 ∈ ℂ
1312addridi 11431 . 2 (𝐴 + 0) = 𝐴
141, 10, 133eqtri 2760 1 𝐴0 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  wne 2937  (class class class)co 7420  cc 11136  0cc0 11138  1c1 11139   + caddc 11141   / cdiv 11901  0cn0 12502  cdc 12707  cdp2 32594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-dec 12708  df-dp2 32595
This theorem is referenced by:  rpdp2cl2  32606  dp0u  32624  1mhdrd  32639  hgt750lem2  34284
  Copyright terms: Public domain W3C validator