Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elex22VD Structured version   Visualization version   GIF version

Theorem elex22VD 42780
Description: Virtual deduction proof of elex22 3463. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elex22VD ((𝐴𝐵𝐴𝐶) → ∃𝑥(𝑥𝐵𝑥𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elex22VD
StepHypRef Expression
1 idn1 42515 . . . . 5 (   (𝐴𝐵𝐴𝐶)   ▶   (𝐴𝐵𝐴𝐶)   )
2 simpl 483 . . . . 5 ((𝐴𝐵𝐴𝐶) → 𝐴𝐵)
31, 2e1a 42568 . . . 4 (   (𝐴𝐵𝐴𝐶)   ▶   𝐴𝐵   )
4 elisset 2818 . . . 4 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
53, 4e1a 42568 . . 3 (   (𝐴𝐵𝐴𝐶)   ▶   𝑥 𝑥 = 𝐴   )
6 idn2 42554 . . . . . . . 8 (   (𝐴𝐵𝐴𝐶)   ,   𝑥 = 𝐴   ▶   𝑥 = 𝐴   )
7 eleq1a 2832 . . . . . . . 8 (𝐴𝐵 → (𝑥 = 𝐴𝑥𝐵))
83, 6, 7e12 42665 . . . . . . 7 (   (𝐴𝐵𝐴𝐶)   ,   𝑥 = 𝐴   ▶   𝑥𝐵   )
9 simpr 485 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶) → 𝐴𝐶)
101, 9e1a 42568 . . . . . . . 8 (   (𝐴𝐵𝐴𝐶)   ▶   𝐴𝐶   )
11 eleq1a 2832 . . . . . . . 8 (𝐴𝐶 → (𝑥 = 𝐴𝑥𝐶))
1210, 6, 11e12 42665 . . . . . . 7 (   (𝐴𝐵𝐴𝐶)   ,   𝑥 = 𝐴   ▶   𝑥𝐶   )
13 pm3.2 470 . . . . . . 7 (𝑥𝐵 → (𝑥𝐶 → (𝑥𝐵𝑥𝐶)))
148, 12, 13e22 42612 . . . . . 6 (   (𝐴𝐵𝐴𝐶)   ,   𝑥 = 𝐴   ▶   (𝑥𝐵𝑥𝐶)   )
1514in2 42546 . . . . 5 (   (𝐴𝐵𝐴𝐶)   ▶   (𝑥 = 𝐴 → (𝑥𝐵𝑥𝐶))   )
1615gen11 42557 . . . 4 (   (𝐴𝐵𝐴𝐶)   ▶   𝑥(𝑥 = 𝐴 → (𝑥𝐵𝑥𝐶))   )
17 exim 1835 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝑥𝐵𝑥𝐶)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥𝐵𝑥𝐶)))
1816, 17e1a 42568 . . 3 (   (𝐴𝐵𝐴𝐶)   ▶   (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥𝐵𝑥𝐶))   )
19 pm2.27 42 . . 3 (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥𝐵𝑥𝐶)) → ∃𝑥(𝑥𝐵𝑥𝐶)))
205, 18, 19e11 42629 . 2 (   (𝐴𝐵𝐴𝐶)   ▶   𝑥(𝑥𝐵𝑥𝐶)   )
2120in1 42512 1 ((𝐴𝐵𝐴𝐶) → ∃𝑥(𝑥𝐵𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1538   = wceq 1540  wex 1780  wcel 2105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-vd1 42511  df-vd2 42519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator