Proof of Theorem elex22VD
Step | Hyp | Ref
| Expression |
1 | | idn1 42147 |
. . . . 5
⊢ ( (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ▶ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ) |
2 | | simpl 482 |
. . . . 5
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
3 | 1, 2 | e1a 42200 |
. . . 4
⊢ ( (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ▶ 𝐴 ∈ 𝐵 ) |
4 | | elisset 2821 |
. . . 4
⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) |
5 | 3, 4 | e1a 42200 |
. . 3
⊢ ( (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ▶ ∃𝑥 𝑥 = 𝐴 ) |
6 | | idn2 42186 |
. . . . . . . 8
⊢ ( (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) , 𝑥 = 𝐴 ▶ 𝑥 = 𝐴 ) |
7 | | eleq1a 2835 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
8 | 3, 6, 7 | e12 42297 |
. . . . . . 7
⊢ ( (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) , 𝑥 = 𝐴 ▶ 𝑥 ∈ 𝐵 ) |
9 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ 𝐶) |
10 | 1, 9 | e1a 42200 |
. . . . . . . 8
⊢ ( (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ▶ 𝐴 ∈ 𝐶 ) |
11 | | eleq1a 2835 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝐶 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐶)) |
12 | 10, 6, 11 | e12 42297 |
. . . . . . 7
⊢ ( (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) , 𝑥 = 𝐴 ▶ 𝑥 ∈ 𝐶 ) |
13 | | pm3.2 469 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
14 | 8, 12, 13 | e22 42244 |
. . . . . 6
⊢ ( (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) , 𝑥 = 𝐴 ▶ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) ) |
15 | 14 | in2 42178 |
. . . . 5
⊢ ( (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ▶ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) ) |
16 | 15 | gen11 42189 |
. . . 4
⊢ ( (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ▶ ∀𝑥(𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) ) |
17 | | exim 1839 |
. . . 4
⊢
(∀𝑥(𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
18 | 16, 17 | e1a 42200 |
. . 3
⊢ ( (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ▶ (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) ) |
19 | | pm2.27 42 |
. . 3
⊢
(∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
20 | 5, 18, 19 | e11 42261 |
. 2
⊢ ( (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ▶ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) ) |
21 | 20 | in1 42144 |
1
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |