Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmep | Structured version Visualization version GIF version |
Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof shortened by BJ, 26-Dec-2023.) |
Ref | Expression |
---|---|
dmep | ⊢ dom E = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3439 | . 2 ⊢ (dom E = V ↔ ∀𝑥 𝑥 ∈ dom E ) | |
2 | el 5295 | . . . 4 ⊢ ∃𝑦 𝑥 ∈ 𝑦 | |
3 | epel 5497 | . . . . 5 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
4 | 3 | exbii 1853 | . . . 4 ⊢ (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑥 ∈ 𝑦) |
5 | 2, 4 | mpbir 230 | . . 3 ⊢ ∃𝑦 𝑥 E 𝑦 |
6 | vex 3434 | . . . 4 ⊢ 𝑥 ∈ V | |
7 | 6 | eldm 5806 | . . 3 ⊢ (𝑥 ∈ dom E ↔ ∃𝑦 𝑥 E 𝑦) |
8 | 5, 7 | mpbir 230 | . 2 ⊢ 𝑥 ∈ dom E |
9 | 1, 8 | mpgbir 1805 | 1 ⊢ dom E = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∃wex 1785 ∈ wcel 2109 Vcvv 3430 class class class wbr 5078 E cep 5493 dom cdm 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-eprel 5494 df-dm 5598 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |