MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmep Structured version   Visualization version   GIF version

Theorem dmep 5845
Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof shortened by BJ, 26-Dec-2023.)
Assertion
Ref Expression
dmep dom E = V

Proof of Theorem dmep
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3446 . 2 (dom E = V ↔ ∀𝑥 𝑥 ∈ dom E )
2 el 5370 . . . 4 𝑦 𝑥𝑦
3 epel 5509 . . . . 5 (𝑥 E 𝑦𝑥𝑦)
43exbii 1848 . . . 4 (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑥𝑦)
52, 4mpbir 230 . . 3 𝑦 𝑥 E 𝑦
6 vex 3441 . . . 4 𝑥 ∈ V
76eldm 5822 . . 3 (𝑥 ∈ dom E ↔ ∃𝑦 𝑥 E 𝑦)
85, 7mpbir 230 . 2 𝑥 ∈ dom E
91, 8mpgbir 1799 1 dom E = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wex 1779  wcel 2104  Vcvv 3437   class class class wbr 5081   E cep 5505  dom cdm 5600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-eprel 5506  df-dm 5610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator