![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmep | Structured version Visualization version GIF version |
Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof shortened by BJ, 26-Dec-2023.) |
Ref | Expression |
---|---|
dmep | ⊢ dom E = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3498 | . 2 ⊢ (dom E = V ↔ ∀𝑥 𝑥 ∈ dom E ) | |
2 | el 5457 | . . . 4 ⊢ ∃𝑦 𝑥 ∈ 𝑦 | |
3 | epel 5602 | . . . . 5 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
4 | 3 | exbii 1846 | . . . 4 ⊢ (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑥 ∈ 𝑦) |
5 | 2, 4 | mpbir 231 | . . 3 ⊢ ∃𝑦 𝑥 E 𝑦 |
6 | vex 3492 | . . . 4 ⊢ 𝑥 ∈ V | |
7 | 6 | eldm 5925 | . . 3 ⊢ (𝑥 ∈ dom E ↔ ∃𝑦 𝑥 E 𝑦) |
8 | 5, 7 | mpbir 231 | . 2 ⊢ 𝑥 ∈ dom E |
9 | 1, 8 | mpgbir 1797 | 1 ⊢ dom E = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 E cep 5598 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-dm 5710 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |