MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmep Structured version   Visualization version   GIF version

Theorem dmep 5890
Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof shortened by BJ, 26-Dec-2023.)
Assertion
Ref Expression
dmep dom E = V

Proof of Theorem dmep
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3460 . 2 (dom E = V ↔ ∀𝑥 𝑥 ∈ dom E )
2 el 5400 . . . 4 𝑦 𝑥𝑦
3 epel 5544 . . . . 5 (𝑥 E 𝑦𝑥𝑦)
43exbii 1848 . . . 4 (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑥𝑦)
52, 4mpbir 231 . . 3 𝑦 𝑥 E 𝑦
6 vex 3454 . . . 4 𝑥 ∈ V
76eldm 5867 . . 3 (𝑥 ∈ dom E ↔ ∃𝑦 𝑥 E 𝑦)
85, 7mpbir 231 . 2 𝑥 ∈ dom E
91, 8mpgbir 1799 1 dom E = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450   class class class wbr 5110   E cep 5540  dom cdm 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-eprel 5541  df-dm 5651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator