Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmep | Structured version Visualization version GIF version |
Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof shortened by BJ, 26-Dec-2023.) |
Ref | Expression |
---|---|
dmep | ⊢ dom E = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3446 | . 2 ⊢ (dom E = V ↔ ∀𝑥 𝑥 ∈ dom E ) | |
2 | el 5370 | . . . 4 ⊢ ∃𝑦 𝑥 ∈ 𝑦 | |
3 | epel 5509 | . . . . 5 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
4 | 3 | exbii 1848 | . . . 4 ⊢ (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑥 ∈ 𝑦) |
5 | 2, 4 | mpbir 230 | . . 3 ⊢ ∃𝑦 𝑥 E 𝑦 |
6 | vex 3441 | . . . 4 ⊢ 𝑥 ∈ V | |
7 | 6 | eldm 5822 | . . 3 ⊢ (𝑥 ∈ dom E ↔ ∃𝑦 𝑥 E 𝑦) |
8 | 5, 7 | mpbir 230 | . 2 ⊢ 𝑥 ∈ dom E |
9 | 1, 8 | mpgbir 1799 | 1 ⊢ dom E = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1779 ∈ wcel 2104 Vcvv 3437 class class class wbr 5081 E cep 5505 dom cdm 5600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-eprel 5506 df-dm 5610 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |