MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmep Structured version   Visualization version   GIF version

Theorem dmep 5921
Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof shortened by BJ, 26-Dec-2023.)
Assertion
Ref Expression
dmep dom E = V

Proof of Theorem dmep
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3483 . 2 (dom E = V ↔ ∀𝑥 𝑥 ∈ dom E )
2 el 5436 . . . 4 𝑦 𝑥𝑦
3 epel 5582 . . . . 5 (𝑥 E 𝑦𝑥𝑦)
43exbii 1850 . . . 4 (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑥𝑦)
52, 4mpbir 230 . . 3 𝑦 𝑥 E 𝑦
6 vex 3478 . . . 4 𝑥 ∈ V
76eldm 5898 . . 3 (𝑥 ∈ dom E ↔ ∃𝑦 𝑥 E 𝑦)
85, 7mpbir 230 . 2 𝑥 ∈ dom E
91, 8mpgbir 1801 1 dom E = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wex 1781  wcel 2106  Vcvv 3474   class class class wbr 5147   E cep 5578  dom cdm 5675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-eprel 5579  df-dm 5685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator