![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmep | Structured version Visualization version GIF version |
Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof shortened by BJ, 26-Dec-2023.) |
Ref | Expression |
---|---|
dmep | ⊢ dom E = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3483 | . 2 ⊢ (dom E = V ↔ ∀𝑥 𝑥 ∈ dom E ) | |
2 | el 5436 | . . . 4 ⊢ ∃𝑦 𝑥 ∈ 𝑦 | |
3 | epel 5582 | . . . . 5 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
4 | 3 | exbii 1850 | . . . 4 ⊢ (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑥 ∈ 𝑦) |
5 | 2, 4 | mpbir 230 | . . 3 ⊢ ∃𝑦 𝑥 E 𝑦 |
6 | vex 3478 | . . . 4 ⊢ 𝑥 ∈ V | |
7 | 6 | eldm 5898 | . . 3 ⊢ (𝑥 ∈ dom E ↔ ∃𝑦 𝑥 E 𝑦) |
8 | 5, 7 | mpbir 230 | . 2 ⊢ 𝑥 ∈ dom E |
9 | 1, 8 | mpgbir 1801 | 1 ⊢ dom E = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 class class class wbr 5147 E cep 5578 dom cdm 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-eprel 5579 df-dm 5685 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |