MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmep Structured version   Visualization version   GIF version

Theorem dmep 5863
Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof shortened by BJ, 26-Dec-2023.)
Assertion
Ref Expression
dmep dom E = V

Proof of Theorem dmep
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3446 . 2 (dom E = V ↔ ∀𝑥 𝑥 ∈ dom E )
2 el 5380 . . . 4 𝑦 𝑥𝑦
3 epel 5519 . . . . 5 (𝑥 E 𝑦𝑥𝑦)
43exbii 1849 . . . 4 (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑥𝑦)
52, 4mpbir 231 . . 3 𝑦 𝑥 E 𝑦
6 vex 3440 . . . 4 𝑥 ∈ V
76eldm 5840 . . 3 (𝑥 ∈ dom E ↔ ∃𝑦 𝑥 E 𝑦)
85, 7mpbir 231 . 2 𝑥 ∈ dom E
91, 8mpgbir 1800 1 dom E = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436   class class class wbr 5091   E cep 5515  dom cdm 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-eprel 5516  df-dm 5626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator