MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmep Structured version   Visualization version   GIF version

Theorem dmep 5829
Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof shortened by BJ, 26-Dec-2023.)
Assertion
Ref Expression
dmep dom E = V

Proof of Theorem dmep
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3439 . 2 (dom E = V ↔ ∀𝑥 𝑥 ∈ dom E )
2 el 5295 . . . 4 𝑦 𝑥𝑦
3 epel 5497 . . . . 5 (𝑥 E 𝑦𝑥𝑦)
43exbii 1853 . . . 4 (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑥𝑦)
52, 4mpbir 230 . . 3 𝑦 𝑥 E 𝑦
6 vex 3434 . . . 4 𝑥 ∈ V
76eldm 5806 . . 3 (𝑥 ∈ dom E ↔ ∃𝑦 𝑥 E 𝑦)
85, 7mpbir 230 . 2 𝑥 ∈ dom E
91, 8mpgbir 1805 1 dom E = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wex 1785  wcel 2109  Vcvv 3430   class class class wbr 5078   E cep 5493  dom cdm 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-eprel 5494  df-dm 5598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator