| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmep | Structured version Visualization version GIF version | ||
| Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof shortened by BJ, 26-Dec-2023.) |
| Ref | Expression |
|---|---|
| dmep | ⊢ dom E = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqv 3447 | . 2 ⊢ (dom E = V ↔ ∀𝑥 𝑥 ∈ dom E ) | |
| 2 | el 5384 | . . . 4 ⊢ ∃𝑦 𝑥 ∈ 𝑦 | |
| 3 | epel 5524 | . . . . 5 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
| 4 | 3 | exbii 1849 | . . . 4 ⊢ (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑥 ∈ 𝑦) |
| 5 | 2, 4 | mpbir 231 | . . 3 ⊢ ∃𝑦 𝑥 E 𝑦 |
| 6 | vex 3441 | . . . 4 ⊢ 𝑥 ∈ V | |
| 7 | 6 | eldm 5846 | . . 3 ⊢ (𝑥 ∈ dom E ↔ ∃𝑦 𝑥 E 𝑦) |
| 8 | 5, 7 | mpbir 231 | . 2 ⊢ 𝑥 ∈ dom E |
| 9 | 1, 8 | mpgbir 1800 | 1 ⊢ dom E = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 class class class wbr 5095 E cep 5520 dom cdm 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-eprel 5521 df-dm 5631 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |