MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmep Structured version   Visualization version   GIF version

Theorem dmep 5937
Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof shortened by BJ, 26-Dec-2023.)
Assertion
Ref Expression
dmep dom E = V

Proof of Theorem dmep
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3488 . 2 (dom E = V ↔ ∀𝑥 𝑥 ∈ dom E )
2 el 5448 . . . 4 𝑦 𝑥𝑦
3 epel 5592 . . . . 5 (𝑥 E 𝑦𝑥𝑦)
43exbii 1845 . . . 4 (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑥𝑦)
52, 4mpbir 231 . . 3 𝑦 𝑥 E 𝑦
6 vex 3482 . . . 4 𝑥 ∈ V
76eldm 5914 . . 3 (𝑥 ∈ dom E ↔ ∃𝑦 𝑥 E 𝑦)
85, 7mpbir 231 . 2 𝑥 ∈ dom E
91, 8mpgbir 1796 1 dom E = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wex 1776  wcel 2106  Vcvv 3478   class class class wbr 5148   E cep 5588  dom cdm 5689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-eprel 5589  df-dm 5699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator