MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkgl Structured version   Visualization version   GIF version

Theorem istrkgl 27400
Description: Building lines from the segment property. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkgl (𝐺 ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} ↔ (𝐺 ∈ V ∧ (LineG‘𝐺) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})))
Distinct variable groups:   𝑓,𝑖,𝑝,𝐺   𝑥,𝑓,𝑦,𝑧,𝐼,𝑖,𝑝   𝑃,𝑓,𝑖,𝑝,𝑥,𝑦,𝑧   ,𝑓,𝑖,𝑝,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem istrkgl
StepHypRef Expression
1 istrkg.p . . . 4 𝑃 = (Base‘𝐺)
2 istrkg.i . . . 4 𝐼 = (Itv‘𝐺)
3 simpl 483 . . . . . . 7 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝑝 = 𝑃)
43eqcomd 2742 . . . . . 6 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝑃 = 𝑝)
54adantr 481 . . . . . . 7 (((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) → 𝑃 = 𝑝)
65difeq1d 4081 . . . . . 6 (((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) → (𝑃 ∖ {𝑥}) = (𝑝 ∖ {𝑥}))
7 simpr 485 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝑖 = 𝐼)
87eqcomd 2742 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝐼 = 𝑖)
98oveqd 7374 . . . . . . . . . 10 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑥𝐼𝑦) = (𝑥𝑖𝑦))
109eleq2d 2823 . . . . . . . . 9 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑥𝑖𝑦)))
118oveqd 7374 . . . . . . . . . 10 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑧𝐼𝑦) = (𝑧𝑖𝑦))
1211eleq2d 2823 . . . . . . . . 9 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑥 ∈ (𝑧𝑖𝑦)))
138oveqd 7374 . . . . . . . . . 10 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑥𝐼𝑧) = (𝑥𝑖𝑧))
1413eleq2d 2823 . . . . . . . . 9 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑥𝑖𝑧)))
1510, 12, 143orbi123d 1435 . . . . . . . 8 ((𝑝 = 𝑃𝑖 = 𝐼) → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))
164, 15rabeqbidv 3424 . . . . . . 7 ((𝑝 = 𝑃𝑖 = 𝐼) → {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} = {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
1716adantr 481 . . . . . 6 (((𝑝 = 𝑃𝑖 = 𝐼) ∧ (𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥}))) → {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} = {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
184, 6, 17mpoeq123dva 7431 . . . . 5 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}))
1918eqeq2d 2747 . . . 4 ((𝑝 = 𝑃𝑖 = 𝐼) → ((LineG‘𝑓) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ (LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})))
201, 2, 19sbcie2s 17033 . . 3 (𝑓 = 𝐺 → ([(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) ↔ (LineG‘𝑓) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})))
21 fveqeq2 6851 . . 3 (𝑓 = 𝐺 → ((LineG‘𝑓) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ (LineG‘𝐺) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})))
2220, 21bitrd 278 . 2 (𝑓 = 𝐺 → ([(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) ↔ (LineG‘𝐺) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})))
23 eqid 2736 . 2 {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} = {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}
2422, 23elab4g 3635 1 (𝐺 ∈ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} ↔ (𝐺 ∈ V ∧ (LineG‘𝐺) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3o 1086   = wceq 1541  wcel 2106  {cab 2713  {crab 3407  Vcvv 3445  [wsbc 3739  cdif 3907  {csn 4586  cfv 6496  (class class class)co 7357  cmpo 7359  Basecbs 17083  distcds 17142  Itvcitv 27375  LineGclng 27376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707  ax-nul 5263
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2944  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-iota 6448  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362
This theorem is referenced by:  tglng  27488  f1otrg  27813  eengtrkg  27935
  Copyright terms: Public domain W3C validator