MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkgl Structured version   Visualization version   GIF version

Theorem istrkgl 28144
Description: Building lines from the segment property. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Baseβ€˜πΊ)
istrkg.d βˆ’ = (distβ€˜πΊ)
istrkg.i 𝐼 = (Itvβ€˜πΊ)
Assertion
Ref Expression
istrkgl (𝐺 ∈ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})} ↔ (𝐺 ∈ V ∧ (LineGβ€˜πΊ) = (π‘₯ ∈ 𝑃, 𝑦 ∈ (𝑃 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})))
Distinct variable groups:   𝑓,𝑖,𝑝,𝐺   π‘₯,𝑓,𝑦,𝑧,𝐼,𝑖,𝑝   𝑃,𝑓,𝑖,𝑝,π‘₯,𝑦,𝑧   βˆ’ ,𝑓,𝑖,𝑝,π‘₯,𝑦,𝑧
Allowed substitution hints:   𝐺(π‘₯,𝑦,𝑧)

Proof of Theorem istrkgl
StepHypRef Expression
1 istrkg.p . . . 4 𝑃 = (Baseβ€˜πΊ)
2 istrkg.i . . . 4 𝐼 = (Itvβ€˜πΊ)
3 simpl 482 . . . . . 6 ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) β†’ 𝑝 = 𝑃)
43difeq1d 4121 . . . . . 6 ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) β†’ (𝑝 βˆ– {π‘₯}) = (𝑃 βˆ– {π‘₯}))
5 simpr 484 . . . . . . . . . 10 ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) β†’ 𝑖 = 𝐼)
65oveqd 7429 . . . . . . . . 9 ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) β†’ (π‘₯𝑖𝑦) = (π‘₯𝐼𝑦))
76eleq2d 2818 . . . . . . . 8 ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) β†’ (𝑧 ∈ (π‘₯𝑖𝑦) ↔ 𝑧 ∈ (π‘₯𝐼𝑦)))
85oveqd 7429 . . . . . . . . 9 ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) β†’ (𝑧𝑖𝑦) = (𝑧𝐼𝑦))
98eleq2d 2818 . . . . . . . 8 ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) β†’ (π‘₯ ∈ (𝑧𝑖𝑦) ↔ π‘₯ ∈ (𝑧𝐼𝑦)))
105oveqd 7429 . . . . . . . . 9 ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) β†’ (π‘₯𝑖𝑧) = (π‘₯𝐼𝑧))
1110eleq2d 2818 . . . . . . . 8 ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) β†’ (𝑦 ∈ (π‘₯𝑖𝑧) ↔ 𝑦 ∈ (π‘₯𝐼𝑧)))
127, 9, 113orbi123d 1434 . . . . . . 7 ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) β†’ ((𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧)) ↔ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))))
133, 12rabeqbidv 3448 . . . . . 6 ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) β†’ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))} = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})
143, 4, 13mpoeq123dv 7487 . . . . 5 ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) β†’ (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))}) = (π‘₯ ∈ 𝑃, 𝑦 ∈ (𝑃 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
1514eqeq2d 2742 . . . 4 ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) β†’ ((LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))}) ↔ (LineGβ€˜π‘“) = (π‘₯ ∈ 𝑃, 𝑦 ∈ (𝑃 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})))
161, 2, 15sbcie2s 17101 . . 3 (𝑓 = 𝐺 β†’ ([(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))}) ↔ (LineGβ€˜π‘“) = (π‘₯ ∈ 𝑃, 𝑦 ∈ (𝑃 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})))
17 fveqeq2 6900 . . 3 (𝑓 = 𝐺 β†’ ((LineGβ€˜π‘“) = (π‘₯ ∈ 𝑃, 𝑦 ∈ (𝑃 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) ↔ (LineGβ€˜πΊ) = (π‘₯ ∈ 𝑃, 𝑦 ∈ (𝑃 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})))
1816, 17bitrd 279 . 2 (𝑓 = 𝐺 β†’ ([(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))}) ↔ (LineGβ€˜πΊ) = (π‘₯ ∈ 𝑃, 𝑦 ∈ (𝑃 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})))
19 eqid 2731 . 2 {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})} = {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})}
2018, 19elab4g 3673 1 (𝐺 ∈ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})} ↔ (𝐺 ∈ V ∧ (LineGβ€˜πΊ) = (π‘₯ ∈ 𝑃, 𝑦 ∈ (𝑃 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   ∨ w3o 1085   = wceq 1540   ∈ wcel 2105  {cab 2708  {crab 3431  Vcvv 3473  [wsbc 3777   βˆ– cdif 3945  {csn 4628  β€˜cfv 6543  (class class class)co 7412   ∈ cmpo 7414  Basecbs 17151  distcds 17213  Itvcitv 28119  LineGclng 28120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417
This theorem is referenced by:  tglng  28232  f1otrg  28557  eengtrkg  28679
  Copyright terms: Public domain W3C validator