Proof of Theorem istrkgl
Step | Hyp | Ref
| Expression |
1 | | istrkg.p |
. . . 4
⊢ 𝑃 = (Base‘𝐺) |
2 | | istrkg.i |
. . . 4
⊢ 𝐼 = (Itv‘𝐺) |
3 | | simpl 482 |
. . . . . . 7
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝑝 = 𝑃) |
4 | 3 | eqcomd 2744 |
. . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝑃 = 𝑝) |
5 | 4 | adantr 480 |
. . . . . . 7
⊢ (((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) ∧ 𝑥 ∈ 𝑃) → 𝑃 = 𝑝) |
6 | 5 | difeq1d 4052 |
. . . . . 6
⊢ (((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) ∧ 𝑥 ∈ 𝑃) → (𝑃 ∖ {𝑥}) = (𝑝 ∖ {𝑥})) |
7 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) |
8 | 7 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝐼 = 𝑖) |
9 | 8 | oveqd 7272 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑥𝐼𝑦) = (𝑥𝑖𝑦)) |
10 | 9 | eleq2d 2824 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑥𝑖𝑦))) |
11 | 8 | oveqd 7272 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑧𝐼𝑦) = (𝑧𝑖𝑦)) |
12 | 11 | eleq2d 2824 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑥 ∈ (𝑧𝑖𝑦))) |
13 | 8 | oveqd 7272 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑥𝐼𝑧) = (𝑥𝑖𝑧)) |
14 | 13 | eleq2d 2824 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑥𝑖𝑧))) |
15 | 10, 12, 14 | 3orbi123d 1433 |
. . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) |
16 | 4, 15 | rabeqbidv 3410 |
. . . . . . 7
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} = {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) |
17 | 16 | adantr 480 |
. . . . . 6
⊢ (((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥}))) → {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} = {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) |
18 | 4, 6, 17 | mpoeq123dva 7327 |
. . . . 5
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})) |
19 | 18 | eqeq2d 2749 |
. . . 4
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → ((LineG‘𝑓) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ (LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}))) |
20 | 1, 2, 19 | sbcie2s 16790 |
. . 3
⊢ (𝑓 = 𝐺 → ([(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) ↔ (LineG‘𝑓) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))) |
21 | | fveqeq2 6765 |
. . 3
⊢ (𝑓 = 𝐺 → ((LineG‘𝑓) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ (LineG‘𝐺) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))) |
22 | 20, 21 | bitrd 278 |
. 2
⊢ (𝑓 = 𝐺 → ([(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) ↔ (LineG‘𝐺) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))) |
23 | | eqid 2738 |
. 2
⊢ {𝑓 ∣
[(Base‘𝑓) /
𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} |
24 | 22, 23 | elab4g 3607 |
1
⊢ (𝐺 ∈ {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} ↔ (𝐺 ∈ V ∧ (LineG‘𝐺) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))) |