MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkge Structured version   Visualization version   GIF version

Theorem istrkge 26235
Description: Property of fulfilling Euclid's axiom. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkge (𝐺 ∈ TarskiGE ↔ (𝐺 ∈ V ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
Distinct variable groups:   𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧,𝐼   𝑃,𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧   ,𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧,𝑣,𝑢,𝑎,𝑏)

Proof of Theorem istrkge
Dummy variables 𝑓 𝑖 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istrkg.p . . 3 𝑃 = (Base‘𝐺)
2 istrkg.i . . 3 𝐼 = (Itv‘𝐺)
3 simpl 485 . . . . 5 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝑝 = 𝑃)
43eqcomd 2825 . . . 4 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝑃 = 𝑝)
54adantr 483 . . . . 5 (((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) → 𝑃 = 𝑝)
65adantr 483 . . . . . 6 ((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → 𝑃 = 𝑝)
76adantr 483 . . . . . . 7 (((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) → 𝑃 = 𝑝)
87adantr 483 . . . . . . . 8 ((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) → 𝑃 = 𝑝)
9 simp-6r 786 . . . . . . . . . . . . 13 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → 𝑖 = 𝐼)
109eqcomd 2825 . . . . . . . . . . . 12 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → 𝐼 = 𝑖)
1110oveqd 7165 . . . . . . . . . . 11 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → (𝑥𝐼𝑣) = (𝑥𝑖𝑣))
1211eleq2d 2896 . . . . . . . . . 10 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → (𝑢 ∈ (𝑥𝐼𝑣) ↔ 𝑢 ∈ (𝑥𝑖𝑣)))
1310oveqd 7165 . . . . . . . . . . 11 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → (𝑦𝐼𝑧) = (𝑦𝑖𝑧))
1413eleq2d 2896 . . . . . . . . . 10 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → (𝑢 ∈ (𝑦𝐼𝑧) ↔ 𝑢 ∈ (𝑦𝑖𝑧)))
1512, 143anbi12d 1431 . . . . . . . . 9 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) ↔ (𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢)))
168adantr 483 . . . . . . . . . 10 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → 𝑃 = 𝑝)
1716adantr 483 . . . . . . . . . . 11 ((((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑎𝑃) → 𝑃 = 𝑝)
189ad2antrr 724 . . . . . . . . . . . . . . 15 (((((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑎𝑃) ∧ 𝑏𝑃) → 𝑖 = 𝐼)
1918eqcomd 2825 . . . . . . . . . . . . . 14 (((((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑎𝑃) ∧ 𝑏𝑃) → 𝐼 = 𝑖)
2019oveqd 7165 . . . . . . . . . . . . 13 (((((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑎𝑃) ∧ 𝑏𝑃) → (𝑥𝐼𝑎) = (𝑥𝑖𝑎))
2120eleq2d 2896 . . . . . . . . . . . 12 (((((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑎𝑃) ∧ 𝑏𝑃) → (𝑦 ∈ (𝑥𝐼𝑎) ↔ 𝑦 ∈ (𝑥𝑖𝑎)))
2219oveqd 7165 . . . . . . . . . . . . 13 (((((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑎𝑃) ∧ 𝑏𝑃) → (𝑥𝐼𝑏) = (𝑥𝑖𝑏))
2322eleq2d 2896 . . . . . . . . . . . 12 (((((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑎𝑃) ∧ 𝑏𝑃) → (𝑧 ∈ (𝑥𝐼𝑏) ↔ 𝑧 ∈ (𝑥𝑖𝑏)))
2419oveqd 7165 . . . . . . . . . . . . 13 (((((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑎𝑃) ∧ 𝑏𝑃) → (𝑎𝐼𝑏) = (𝑎𝑖𝑏))
2524eleq2d 2896 . . . . . . . . . . . 12 (((((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑎𝑃) ∧ 𝑏𝑃) → (𝑣 ∈ (𝑎𝐼𝑏) ↔ 𝑣 ∈ (𝑎𝑖𝑏)))
2621, 23, 253anbi123d 1430 . . . . . . . . . . 11 (((((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑎𝑃) ∧ 𝑏𝑃) → ((𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏))))
2717, 26rexeqbidva 3425 . . . . . . . . . 10 ((((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑎𝑃) → (∃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏))))
2816, 27rexeqbidva 3425 . . . . . . . . 9 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → (∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏))))
2915, 28imbi12d 347 . . . . . . . 8 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → (((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)))))
308, 29raleqbidva 3424 . . . . . . 7 ((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) → (∀𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)))))
317, 30raleqbidva 3424 . . . . . 6 (((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)))))
326, 31raleqbidva 3424 . . . . 5 ((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → (∀𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)))))
335, 32raleqbidva 3424 . . . 4 (((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) → (∀𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)))))
344, 33raleqbidva 3424 . . 3 ((𝑝 = 𝑃𝑖 = 𝐼) → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)))))
351, 2, 34sbcie2s 16532 . 2 (𝑓 = 𝐺 → ([(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖]𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏))) ↔ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
36 df-trkge 26229 . 2 TarskiGE = {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖]𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)))}
3735, 36elab4g 3669 1 (𝐺 ∈ TarskiGE ↔ (𝐺 ∈ V ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014  wral 3136  wrex 3137  Vcvv 3493  [wsbc 3770  cfv 6348  (class class class)co 7148  Basecbs 16475  distcds 16566  TarskiGEcstrkge 26213  Itvcitv 26214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-nul 5201
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-iota 6307  df-fv 6356  df-ov 7151  df-trkge 26229
This theorem is referenced by:  axtgeucl  26250  f1otrge  26650  eengtrkge  26765
  Copyright terms: Public domain W3C validator