MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkge Structured version   Visualization version   GIF version

Theorem istrkge 28177
Description: Property of fulfilling Euclid's axiom. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkge (𝐺 ∈ TarskiGE ↔ (𝐺 ∈ V ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
Distinct variable groups:   𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧,𝐼   𝑃,𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧   ,𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧,𝑣,𝑢,𝑎,𝑏)

Proof of Theorem istrkge
Dummy variables 𝑓 𝑖 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istrkg.p . . 3 𝑃 = (Base‘𝐺)
2 istrkg.i . . 3 𝐼 = (Itv‘𝐺)
3 simpl 482 . . . 4 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝑝 = 𝑃)
4 simpr 484 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝑖 = 𝐼)
54oveqd 7418 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑥𝑖𝑣) = (𝑥𝐼𝑣))
65eleq2d 2811 . . . . . . . . . 10 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑢 ∈ (𝑥𝑖𝑣) ↔ 𝑢 ∈ (𝑥𝐼𝑣)))
74oveqd 7418 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑦𝑖𝑧) = (𝑦𝐼𝑧))
87eleq2d 2811 . . . . . . . . . 10 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑢 ∈ (𝑦𝑖𝑧) ↔ 𝑢 ∈ (𝑦𝐼𝑧)))
96, 83anbi12d 1433 . . . . . . . . 9 ((𝑝 = 𝑃𝑖 = 𝐼) → ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) ↔ (𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢)))
104oveqd 7418 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑥𝑖𝑎) = (𝑥𝐼𝑎))
1110eleq2d 2811 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑦 ∈ (𝑥𝑖𝑎) ↔ 𝑦 ∈ (𝑥𝐼𝑎)))
124oveqd 7418 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑥𝑖𝑏) = (𝑥𝐼𝑏))
1312eleq2d 2811 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑧 ∈ (𝑥𝑖𝑏) ↔ 𝑧 ∈ (𝑥𝐼𝑏)))
144oveqd 7418 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑎𝑖𝑏) = (𝑎𝐼𝑏))
1514eleq2d 2811 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑖 = 𝐼) → (𝑣 ∈ (𝑎𝑖𝑏) ↔ 𝑣 ∈ (𝑎𝐼𝑏)))
1611, 13, 153anbi123d 1432 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑖 = 𝐼) → ((𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)) ↔ (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
173, 16rexeqbidv 3335 . . . . . . . . . 10 ((𝑝 = 𝑃𝑖 = 𝐼) → (∃𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)) ↔ ∃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
183, 17rexeqbidv 3335 . . . . . . . . 9 ((𝑝 = 𝑃𝑖 = 𝐼) → (∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
199, 18imbi12d 344 . . . . . . . 8 ((𝑝 = 𝑃𝑖 = 𝐼) → (((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏))) ↔ ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
203, 19raleqbidv 3334 . . . . . . 7 ((𝑝 = 𝑃𝑖 = 𝐼) → (∀𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏))) ↔ ∀𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
213, 20raleqbidv 3334 . . . . . 6 ((𝑝 = 𝑃𝑖 = 𝐼) → (∀𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
223, 21raleqbidv 3334 . . . . 5 ((𝑝 = 𝑃𝑖 = 𝐼) → (∀𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏))) ↔ ∀𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
233, 22raleqbidv 3334 . . . 4 ((𝑝 = 𝑃𝑖 = 𝐼) → (∀𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏))) ↔ ∀𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
243, 23raleqbidv 3334 . . 3 ((𝑝 = 𝑃𝑖 = 𝐼) → (∀𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏))) ↔ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
251, 2, 24sbcie2s 17093 . 2 (𝑓 = 𝐺 → ([(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖]𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏))) ↔ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
26 df-trkge 28171 . 2 TarskiGE = {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖]𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)))}
2725, 26elab4g 3665 1 (𝐺 ∈ TarskiGE ↔ (𝐺 ∈ V ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wral 3053  wrex 3062  Vcvv 3466  [wsbc 3769  cfv 6533  (class class class)co 7401  Basecbs 17143  distcds 17205  TarskiGEcstrkge 28152  Itvcitv 28153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-nul 5296
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-iota 6485  df-fv 6541  df-ov 7404  df-trkge 28171
This theorem is referenced by:  axtgeucl  28192  f1otrge  28592  eengtrkge  28714
  Copyright terms: Public domain W3C validator