Step | Hyp | Ref
| Expression |
1 | | istrkg.p |
. . 3
β’ π = (BaseβπΊ) |
2 | | istrkg.i |
. . 3
β’ πΌ = (ItvβπΊ) |
3 | | simpl 483 |
. . . . 5
β’ ((π = π β§ π = πΌ) β π = π) |
4 | | simpr 485 |
. . . . . . . . 9
β’ ((π = π β§ π = πΌ) β π = πΌ) |
5 | 4 | oveqd 7422 |
. . . . . . . 8
β’ ((π = π β§ π = πΌ) β (π₯ππ₯) = (π₯πΌπ₯)) |
6 | 5 | eleq2d 2819 |
. . . . . . 7
β’ ((π = π β§ π = πΌ) β (π¦ β (π₯ππ₯) β π¦ β (π₯πΌπ₯))) |
7 | 6 | imbi1d 341 |
. . . . . 6
β’ ((π = π β§ π = πΌ) β ((π¦ β (π₯ππ₯) β π₯ = π¦) β (π¦ β (π₯πΌπ₯) β π₯ = π¦))) |
8 | 3, 7 | raleqbidv 3342 |
. . . . 5
β’ ((π = π β§ π = πΌ) β (βπ¦ β π (π¦ β (π₯ππ₯) β π₯ = π¦) β βπ¦ β π (π¦ β (π₯πΌπ₯) β π₯ = π¦))) |
9 | 3, 8 | raleqbidv 3342 |
. . . 4
β’ ((π = π β§ π = πΌ) β (βπ₯ β π βπ¦ β π (π¦ β (π₯ππ₯) β π₯ = π¦) β βπ₯ β π βπ¦ β π (π¦ β (π₯πΌπ₯) β π₯ = π¦))) |
10 | 4 | oveqd 7422 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = πΌ) β (π₯ππ§) = (π₯πΌπ§)) |
11 | 10 | eleq2d 2819 |
. . . . . . . . . . 11
β’ ((π = π β§ π = πΌ) β (π’ β (π₯ππ§) β π’ β (π₯πΌπ§))) |
12 | 4 | oveqd 7422 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = πΌ) β (π¦ππ§) = (π¦πΌπ§)) |
13 | 12 | eleq2d 2819 |
. . . . . . . . . . 11
β’ ((π = π β§ π = πΌ) β (π£ β (π¦ππ§) β π£ β (π¦πΌπ§))) |
14 | 11, 13 | anbi12d 631 |
. . . . . . . . . 10
β’ ((π = π β§ π = πΌ) β ((π’ β (π₯ππ§) β§ π£ β (π¦ππ§)) β (π’ β (π₯πΌπ§) β§ π£ β (π¦πΌπ§)))) |
15 | 4 | oveqd 7422 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = πΌ) β (π’ππ¦) = (π’πΌπ¦)) |
16 | 15 | eleq2d 2819 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = πΌ) β (π β (π’ππ¦) β π β (π’πΌπ¦))) |
17 | 4 | oveqd 7422 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = πΌ) β (π£ππ₯) = (π£πΌπ₯)) |
18 | 17 | eleq2d 2819 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = πΌ) β (π β (π£ππ₯) β π β (π£πΌπ₯))) |
19 | 16, 18 | anbi12d 631 |
. . . . . . . . . . 11
β’ ((π = π β§ π = πΌ) β ((π β (π’ππ¦) β§ π β (π£ππ₯)) β (π β (π’πΌπ¦) β§ π β (π£πΌπ₯)))) |
20 | 3, 19 | rexeqbidv 3343 |
. . . . . . . . . 10
β’ ((π = π β§ π = πΌ) β (βπ β π (π β (π’ππ¦) β§ π β (π£ππ₯)) β βπ β π (π β (π’πΌπ¦) β§ π β (π£πΌπ₯)))) |
21 | 14, 20 | imbi12d 344 |
. . . . . . . . 9
β’ ((π = π β§ π = πΌ) β (((π’ β (π₯ππ§) β§ π£ β (π¦ππ§)) β βπ β π (π β (π’ππ¦) β§ π β (π£ππ₯))) β ((π’ β (π₯πΌπ§) β§ π£ β (π¦πΌπ§)) β βπ β π (π β (π’πΌπ¦) β§ π β (π£πΌπ₯))))) |
22 | 3, 21 | raleqbidv 3342 |
. . . . . . . 8
β’ ((π = π β§ π = πΌ) β (βπ£ β π ((π’ β (π₯ππ§) β§ π£ β (π¦ππ§)) β βπ β π (π β (π’ππ¦) β§ π β (π£ππ₯))) β βπ£ β π ((π’ β (π₯πΌπ§) β§ π£ β (π¦πΌπ§)) β βπ β π (π β (π’πΌπ¦) β§ π β (π£πΌπ₯))))) |
23 | 3, 22 | raleqbidv 3342 |
. . . . . . 7
β’ ((π = π β§ π = πΌ) β (βπ’ β π βπ£ β π ((π’ β (π₯ππ§) β§ π£ β (π¦ππ§)) β βπ β π (π β (π’ππ¦) β§ π β (π£ππ₯))) β βπ’ β π βπ£ β π ((π’ β (π₯πΌπ§) β§ π£ β (π¦πΌπ§)) β βπ β π (π β (π’πΌπ¦) β§ π β (π£πΌπ₯))))) |
24 | 3, 23 | raleqbidv 3342 |
. . . . . 6
β’ ((π = π β§ π = πΌ) β (βπ§ β π βπ’ β π βπ£ β π ((π’ β (π₯ππ§) β§ π£ β (π¦ππ§)) β βπ β π (π β (π’ππ¦) β§ π β (π£ππ₯))) β βπ§ β π βπ’ β π βπ£ β π ((π’ β (π₯πΌπ§) β§ π£ β (π¦πΌπ§)) β βπ β π (π β (π’πΌπ¦) β§ π β (π£πΌπ₯))))) |
25 | 3, 24 | raleqbidv 3342 |
. . . . 5
β’ ((π = π β§ π = πΌ) β (βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((π’ β (π₯ππ§) β§ π£ β (π¦ππ§)) β βπ β π (π β (π’ππ¦) β§ π β (π£ππ₯))) β βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((π’ β (π₯πΌπ§) β§ π£ β (π¦πΌπ§)) β βπ β π (π β (π’πΌπ¦) β§ π β (π£πΌπ₯))))) |
26 | 3, 25 | raleqbidv 3342 |
. . . 4
β’ ((π = π β§ π = πΌ) β (βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((π’ β (π₯ππ§) β§ π£ β (π¦ππ§)) β βπ β π (π β (π’ππ¦) β§ π β (π£ππ₯))) β βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((π’ β (π₯πΌπ§) β§ π£ β (π¦πΌπ§)) β βπ β π (π β (π’πΌπ¦) β§ π β (π£πΌπ₯))))) |
27 | 3 | pweqd 4618 |
. . . . 5
β’ ((π = π β§ π = πΌ) β π« π = π« π) |
28 | 4 | oveqd 7422 |
. . . . . . . . . 10
β’ ((π = π β§ π = πΌ) β (πππ¦) = (ππΌπ¦)) |
29 | 28 | eleq2d 2819 |
. . . . . . . . 9
β’ ((π = π β§ π = πΌ) β (π₯ β (πππ¦) β π₯ β (ππΌπ¦))) |
30 | 29 | 2ralbidv 3218 |
. . . . . . . 8
β’ ((π = π β§ π = πΌ) β (βπ₯ β π βπ¦ β π‘ π₯ β (πππ¦) β βπ₯ β π βπ¦ β π‘ π₯ β (ππΌπ¦))) |
31 | 3, 30 | rexeqbidv 3343 |
. . . . . . 7
β’ ((π = π β§ π = πΌ) β (βπ β π βπ₯ β π βπ¦ β π‘ π₯ β (πππ¦) β βπ β π βπ₯ β π βπ¦ β π‘ π₯ β (ππΌπ¦))) |
32 | 4 | oveqd 7422 |
. . . . . . . . . 10
β’ ((π = π β§ π = πΌ) β (π₯ππ¦) = (π₯πΌπ¦)) |
33 | 32 | eleq2d 2819 |
. . . . . . . . 9
β’ ((π = π β§ π = πΌ) β (π β (π₯ππ¦) β π β (π₯πΌπ¦))) |
34 | 33 | 2ralbidv 3218 |
. . . . . . . 8
β’ ((π = π β§ π = πΌ) β (βπ₯ β π βπ¦ β π‘ π β (π₯ππ¦) β βπ₯ β π βπ¦ β π‘ π β (π₯πΌπ¦))) |
35 | 3, 34 | rexeqbidv 3343 |
. . . . . . 7
β’ ((π = π β§ π = πΌ) β (βπ β π βπ₯ β π βπ¦ β π‘ π β (π₯ππ¦) β βπ β π βπ₯ β π βπ¦ β π‘ π β (π₯πΌπ¦))) |
36 | 31, 35 | imbi12d 344 |
. . . . . 6
β’ ((π = π β§ π = πΌ) β ((βπ β π βπ₯ β π βπ¦ β π‘ π₯ β (πππ¦) β βπ β π βπ₯ β π βπ¦ β π‘ π β (π₯ππ¦)) β (βπ β π βπ₯ β π βπ¦ β π‘ π₯ β (ππΌπ¦) β βπ β π βπ₯ β π βπ¦ β π‘ π β (π₯πΌπ¦)))) |
37 | 27, 36 | raleqbidv 3342 |
. . . . 5
β’ ((π = π β§ π = πΌ) β (βπ‘ β π« π(βπ β π βπ₯ β π βπ¦ β π‘ π₯ β (πππ¦) β βπ β π βπ₯ β π βπ¦ β π‘ π β (π₯ππ¦)) β βπ‘ β π« π(βπ β π βπ₯ β π βπ¦ β π‘ π₯ β (ππΌπ¦) β βπ β π βπ₯ β π βπ¦ β π‘ π β (π₯πΌπ¦)))) |
38 | 27, 37 | raleqbidv 3342 |
. . . 4
β’ ((π = π β§ π = πΌ) β (βπ β π« πβπ‘ β π« π(βπ β π βπ₯ β π βπ¦ β π‘ π₯ β (πππ¦) β βπ β π βπ₯ β π βπ¦ β π‘ π β (π₯ππ¦)) β βπ β π« πβπ‘ β π« π(βπ β π βπ₯ β π βπ¦ β π‘ π₯ β (ππΌπ¦) β βπ β π βπ₯ β π βπ¦ β π‘ π β (π₯πΌπ¦)))) |
39 | 9, 26, 38 | 3anbi123d 1436 |
. . 3
β’ ((π = π β§ π = πΌ) β ((βπ₯ β π βπ¦ β π (π¦ β (π₯ππ₯) β π₯ = π¦) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((π’ β (π₯ππ§) β§ π£ β (π¦ππ§)) β βπ β π (π β (π’ππ¦) β§ π β (π£ππ₯))) β§ βπ β π« πβπ‘ β π« π(βπ β π βπ₯ β π βπ¦ β π‘ π₯ β (πππ¦) β βπ β π βπ₯ β π βπ¦ β π‘ π β (π₯ππ¦))) β (βπ₯ β π βπ¦ β π (π¦ β (π₯πΌπ₯) β π₯ = π¦) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((π’ β (π₯πΌπ§) β§ π£ β (π¦πΌπ§)) β βπ β π (π β (π’πΌπ¦) β§ π β (π£πΌπ₯))) β§ βπ β π« πβπ‘ β π« π(βπ β π βπ₯ β π βπ¦ β π‘ π₯ β (ππΌπ¦) β βπ β π βπ₯ β π βπ¦ β π‘ π β (π₯πΌπ¦))))) |
40 | 1, 2, 39 | sbcie2s 17090 |
. 2
β’ (π = πΊ β ([(Baseβπ) / π][(Itvβπ) / π](βπ₯ β π βπ¦ β π (π¦ β (π₯ππ₯) β π₯ = π¦) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((π’ β (π₯ππ§) β§ π£ β (π¦ππ§)) β βπ β π (π β (π’ππ¦) β§ π β (π£ππ₯))) β§ βπ β π« πβπ‘ β π« π(βπ β π βπ₯ β π βπ¦ β π‘ π₯ β (πππ¦) β βπ β π βπ₯ β π βπ¦ β π‘ π β (π₯ππ¦))) β (βπ₯ β π βπ¦ β π (π¦ β (π₯πΌπ₯) β π₯ = π¦) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((π’ β (π₯πΌπ§) β§ π£ β (π¦πΌπ§)) β βπ β π (π β (π’πΌπ¦) β§ π β (π£πΌπ₯))) β§ βπ β π« πβπ‘ β π« π(βπ β π βπ₯ β π βπ¦ β π‘ π₯ β (ππΌπ¦) β βπ β π βπ₯ β π βπ¦ β π‘ π β (π₯πΌπ¦))))) |
41 | | df-trkgb 27689 |
. 2
β’
TarskiGB = {π β£ [(Baseβπ) / π][(Itvβπ) / π](βπ₯ β π βπ¦ β π (π¦ β (π₯ππ₯) β π₯ = π¦) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((π’ β (π₯ππ§) β§ π£ β (π¦ππ§)) β βπ β π (π β (π’ππ¦) β§ π β (π£ππ₯))) β§ βπ β π« πβπ‘ β π« π(βπ β π βπ₯ β π βπ¦ β π‘ π₯ β (πππ¦) β βπ β π βπ₯ β π βπ¦ β π‘ π β (π₯ππ¦)))} |
42 | 40, 41 | elab4g 3672 |
1
β’ (πΊ β TarskiGB
β (πΊ β V β§
(βπ₯ β π βπ¦ β π (π¦ β (π₯πΌπ₯) β π₯ = π¦) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((π’ β (π₯πΌπ§) β§ π£ β (π¦πΌπ§)) β βπ β π (π β (π’πΌπ¦) β§ π β (π£πΌπ₯))) β§ βπ β π« πβπ‘ β π« π(βπ β π βπ₯ β π βπ¦ β π‘ π₯ β (ππΌπ¦) β βπ β π βπ₯ β π βπ¦ β π‘ π β (π₯πΌπ¦))))) |