MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkgb Structured version   Visualization version   GIF version

Theorem istrkgb 25706
Description: Property of being a Tarski geometry - betweenness part. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkgb (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))))
Distinct variable groups:   𝑎,𝑏,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧,𝐼   𝑃,𝑎,𝑏,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   ,𝑎,𝑏,𝑢,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧,𝑣,𝑢,𝑡,𝑠,𝑎,𝑏)   (𝑡,𝑠)

Proof of Theorem istrkgb
Dummy variables 𝑓 𝑖 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istrkg.p . . 3 𝑃 = (Base‘𝐺)
2 istrkg.i . . 3 𝐼 = (Itv‘𝐺)
3 simpl 475 . . . . . 6 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝑝 = 𝑃)
43eqcomd 2805 . . . . 5 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝑃 = 𝑝)
54adantr 473 . . . . . 6 (((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) → 𝑃 = 𝑝)
6 simpllr 794 . . . . . . . . . 10 ((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → 𝑖 = 𝐼)
76eqcomd 2805 . . . . . . . . 9 ((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → 𝐼 = 𝑖)
87oveqd 6895 . . . . . . . 8 ((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → (𝑥𝐼𝑥) = (𝑥𝑖𝑥))
98eleq2d 2864 . . . . . . 7 ((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → (𝑦 ∈ (𝑥𝐼𝑥) ↔ 𝑦 ∈ (𝑥𝑖𝑥)))
109imbi1d 333 . . . . . 6 ((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → ((𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ↔ (𝑦 ∈ (𝑥𝑖𝑥) → 𝑥 = 𝑦)))
115, 10raleqbidva 3337 . . . . 5 (((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) → (∀𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ↔ ∀𝑦𝑝 (𝑦 ∈ (𝑥𝑖𝑥) → 𝑥 = 𝑦)))
124, 11raleqbidva 3337 . . . 4 ((𝑝 = 𝑃𝑖 = 𝐼) → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥𝑝𝑦𝑝 (𝑦 ∈ (𝑥𝑖𝑥) → 𝑥 = 𝑦)))
135adantr 473 . . . . . . 7 ((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → 𝑃 = 𝑝)
1413adantr 473 . . . . . . . 8 (((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) → 𝑃 = 𝑝)
1514adantr 473 . . . . . . . . 9 ((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) → 𝑃 = 𝑝)
16 simp-6r 812 . . . . . . . . . . . . . 14 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → 𝑖 = 𝐼)
1716eqcomd 2805 . . . . . . . . . . . . 13 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → 𝐼 = 𝑖)
1817oveqd 6895 . . . . . . . . . . . 12 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → (𝑥𝐼𝑧) = (𝑥𝑖𝑧))
1918eleq2d 2864 . . . . . . . . . . 11 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → (𝑢 ∈ (𝑥𝐼𝑧) ↔ 𝑢 ∈ (𝑥𝑖𝑧)))
2017oveqd 6895 . . . . . . . . . . . 12 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → (𝑦𝐼𝑧) = (𝑦𝑖𝑧))
2120eleq2d 2864 . . . . . . . . . . 11 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → (𝑣 ∈ (𝑦𝐼𝑧) ↔ 𝑣 ∈ (𝑦𝑖𝑧)))
2219, 21anbi12d 625 . . . . . . . . . 10 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) ↔ (𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧))))
2315adantr 473 . . . . . . . . . . 11 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → 𝑃 = 𝑝)
2417oveqdr 6906 . . . . . . . . . . . . 13 ((((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑎𝑃) → (𝑢𝐼𝑦) = (𝑢𝑖𝑦))
2524eleq2d 2864 . . . . . . . . . . . 12 ((((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑎𝑃) → (𝑎 ∈ (𝑢𝐼𝑦) ↔ 𝑎 ∈ (𝑢𝑖𝑦)))
2617oveqdr 6906 . . . . . . . . . . . . 13 ((((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑎𝑃) → (𝑣𝐼𝑥) = (𝑣𝑖𝑥))
2726eleq2d 2864 . . . . . . . . . . . 12 ((((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑎𝑃) → (𝑎 ∈ (𝑣𝐼𝑥) ↔ 𝑎 ∈ (𝑣𝑖𝑥)))
2825, 27anbi12d 625 . . . . . . . . . . 11 ((((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑎𝑃) → ((𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥)) ↔ (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥))))
2923, 28rexeqbidva 3338 . . . . . . . . . 10 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → (∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥)) ↔ ∃𝑎𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥))))
3022, 29imbi12d 336 . . . . . . . . 9 (((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) ∧ 𝑣𝑃) → (((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ↔ ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥)))))
3115, 30raleqbidva 3337 . . . . . . . 8 ((((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑢𝑃) → (∀𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ↔ ∀𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥)))))
3214, 31raleqbidva 3337 . . . . . . 7 (((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ↔ ∀𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥)))))
3313, 32raleqbidva 3337 . . . . . 6 ((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → (∀𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ↔ ∀𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥)))))
345, 33raleqbidva 3337 . . . . 5 (((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑥𝑃) → (∀𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ↔ ∀𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥)))))
354, 34raleqbidva 3337 . . . 4 ((𝑝 = 𝑃𝑖 = 𝐼) → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ↔ ∀𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥)))))
364pweqd 4354 . . . . 5 ((𝑝 = 𝑃𝑖 = 𝐼) → 𝒫 𝑃 = 𝒫 𝑝)
3736adantr 473 . . . . . 6 (((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑠 ∈ 𝒫 𝑃) → 𝒫 𝑃 = 𝒫 𝑝)
384ad2antrr 718 . . . . . . . 8 ((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑡 ∈ 𝒫 𝑃) → 𝑃 = 𝑝)
39 simp-4r 804 . . . . . . . . . . . 12 (((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑡 ∈ 𝒫 𝑃) ∧ 𝑎𝑃) → 𝑖 = 𝐼)
4039eqcomd 2805 . . . . . . . . . . 11 (((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑡 ∈ 𝒫 𝑃) ∧ 𝑎𝑃) → 𝐼 = 𝑖)
4140oveqd 6895 . . . . . . . . . 10 (((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑡 ∈ 𝒫 𝑃) ∧ 𝑎𝑃) → (𝑎𝐼𝑦) = (𝑎𝑖𝑦))
4241eleq2d 2864 . . . . . . . . 9 (((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑡 ∈ 𝒫 𝑃) ∧ 𝑎𝑃) → (𝑥 ∈ (𝑎𝐼𝑦) ↔ 𝑥 ∈ (𝑎𝑖𝑦)))
43422ralbidv 3170 . . . . . . . 8 (((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑡 ∈ 𝒫 𝑃) ∧ 𝑎𝑃) → (∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∀𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝑖𝑦)))
4438, 43rexeqbidva 3338 . . . . . . 7 ((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑡 ∈ 𝒫 𝑃) → (∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∃𝑎𝑝𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝑖𝑦)))
45 simp-4r 804 . . . . . . . . . . . 12 (((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑡 ∈ 𝒫 𝑃) ∧ 𝑏𝑃) → 𝑖 = 𝐼)
4645eqcomd 2805 . . . . . . . . . . 11 (((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑡 ∈ 𝒫 𝑃) ∧ 𝑏𝑃) → 𝐼 = 𝑖)
4746oveqd 6895 . . . . . . . . . 10 (((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑡 ∈ 𝒫 𝑃) ∧ 𝑏𝑃) → (𝑥𝐼𝑦) = (𝑥𝑖𝑦))
4847eleq2d 2864 . . . . . . . . 9 (((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑡 ∈ 𝒫 𝑃) ∧ 𝑏𝑃) → (𝑏 ∈ (𝑥𝐼𝑦) ↔ 𝑏 ∈ (𝑥𝑖𝑦)))
49482ralbidv 3170 . . . . . . . 8 (((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑡 ∈ 𝒫 𝑃) ∧ 𝑏𝑃) → (∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦) ↔ ∀𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝑖𝑦)))
5038, 49rexeqbidva 3338 . . . . . . 7 ((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑡 ∈ 𝒫 𝑃) → (∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦) ↔ ∃𝑏𝑝𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝑖𝑦)))
5144, 50imbi12d 336 . . . . . 6 ((((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑡 ∈ 𝒫 𝑃) → ((∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)) ↔ (∃𝑎𝑝𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝑖𝑦) → ∃𝑏𝑝𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝑖𝑦))))
5237, 51raleqbidva 3337 . . . . 5 (((𝑝 = 𝑃𝑖 = 𝐼) ∧ 𝑠 ∈ 𝒫 𝑃) → (∀𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)) ↔ ∀𝑡 ∈ 𝒫 𝑝(∃𝑎𝑝𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝑖𝑦) → ∃𝑏𝑝𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝑖𝑦))))
5336, 52raleqbidva 3337 . . . 4 ((𝑝 = 𝑃𝑖 = 𝐼) → (∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)) ↔ ∀𝑠 ∈ 𝒫 𝑝𝑡 ∈ 𝒫 𝑝(∃𝑎𝑝𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝑖𝑦) → ∃𝑏𝑝𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝑖𝑦))))
5412, 35, 533anbi123d 1561 . . 3 ((𝑝 = 𝑃𝑖 = 𝐼) → ((∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦))) ↔ (∀𝑥𝑝𝑦𝑝 (𝑦 ∈ (𝑥𝑖𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑝𝑡 ∈ 𝒫 𝑝(∃𝑎𝑝𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝑖𝑦) → ∃𝑏𝑝𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝑖𝑦)))))
551, 2, 54sbcie2s 16241 . 2 (𝑓 = 𝐺 → ([(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](∀𝑥𝑝𝑦𝑝 (𝑦 ∈ (𝑥𝑖𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑝𝑡 ∈ 𝒫 𝑝(∃𝑎𝑝𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝑖𝑦) → ∃𝑏𝑝𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝑖𝑦))) ↔ (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))))
56 df-trkgb 25700 . 2 TarskiGB = {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](∀𝑥𝑝𝑦𝑝 (𝑦 ∈ (𝑥𝑖𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑝𝑡 ∈ 𝒫 𝑝(∃𝑎𝑝𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝑖𝑦) → ∃𝑏𝑝𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝑖𝑦)))}
5755, 56elab4g 3547 1 (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3089  wrex 3090  Vcvv 3385  [wsbc 3633  𝒫 cpw 4349  cfv 6101  (class class class)co 6878  Basecbs 16184  distcds 16276  TarskiGBcstrkgb 25683  Itvcitv 25687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-nul 4983
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-iota 6064  df-fv 6109  df-ov 6881  df-trkgb 25700
This theorem is referenced by:  axtgbtwnid  25717  axtgpasch  25718  axtgcont1  25719  f1otrg  26108  eengtrkg  26222
  Copyright terms: Public domain W3C validator