Step | Hyp | Ref
| Expression |
1 | | nfdisj1 5009 |
. . . 4
⊢
Ⅎ𝑥Disj
𝑥 ∈ 𝐴 𝐵 |
2 | | nfcv 2920 |
. . . . 5
⊢
Ⅎ𝑥𝑦 |
3 | | disjabrexf.1 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐴 |
4 | 3 | nfcri 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑖 ∈ 𝐴 |
5 | | nfcsb1v 3830 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 |
6 | 5 | nfcri 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵 |
7 | 4, 6 | nfan 1901 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵) |
8 | 7 | nfab 2926 |
. . . . . . . 8
⊢
Ⅎ𝑥{𝑖 ∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} |
9 | 8 | nfuni 4803 |
. . . . . . 7
⊢
Ⅎ𝑥∪ {𝑖
∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} |
10 | 9 | nfcsb1 3829 |
. . . . . 6
⊢
Ⅎ𝑥⦋∪
{𝑖 ∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} / 𝑥⦌𝐵 |
11 | 10 | nfeq1 2935 |
. . . . 5
⊢
Ⅎ𝑥⦋∪
{𝑖 ∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} / 𝑥⦌𝐵 = 𝑦 |
12 | 2, 11 | nfralw 3154 |
. . . 4
⊢
Ⅎ𝑥∀𝑗 ∈ 𝑦 ⦋∪
{𝑖 ∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} / 𝑥⦌𝐵 = 𝑦 |
13 | | eqeq2 2771 |
. . . . 5
⊢ (𝑦 = 𝐵 → (⦋∪ {𝑖
∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} / 𝑥⦌𝐵 = 𝑦 ↔ ⦋∪ {𝑖
∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} / 𝑥⦌𝐵 = 𝐵)) |
14 | 13 | raleqbi1dv 3322 |
. . . 4
⊢ (𝑦 = 𝐵 → (∀𝑗 ∈ 𝑦 ⦋∪
{𝑖 ∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} / 𝑥⦌𝐵 = 𝑦 ↔ ∀𝑗 ∈ 𝐵 ⦋∪
{𝑖 ∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} / 𝑥⦌𝐵 = 𝐵)) |
15 | | vex 3414 |
. . . . 5
⊢ 𝑦 ∈ V |
16 | 15 | a1i 11 |
. . . 4
⊢
(Disj 𝑥
∈ 𝐴 𝐵 → 𝑦 ∈ V) |
17 | | simplll 775 |
. . . . . . . . . . . . 13
⊢
((((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) ∧ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)) → Disj 𝑥 ∈ 𝐴 𝐵) |
18 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢
((((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) ∧ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)) → 𝑥 ∈ 𝐴) |
19 | | simprl 771 |
. . . . . . . . . . . . 13
⊢
((((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) ∧ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)) → 𝑖 ∈ 𝐴) |
20 | | simplr 769 |
. . . . . . . . . . . . 13
⊢
((((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) ∧ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)) → 𝑗 ∈ 𝐵) |
21 | | simprr 773 |
. . . . . . . . . . . . 13
⊢
((((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) ∧ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)) → 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵) |
22 | | csbeq1a 3820 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑥⦌𝐵) |
23 | 3, 5, 22 | disjif2 30432 |
. . . . . . . . . . . . 13
⊢
((Disj 𝑥
∈ 𝐴 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑖 ∈ 𝐴) ∧ (𝑗 ∈ 𝐵 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)) → 𝑥 = 𝑖) |
24 | 17, 18, 19, 20, 21, 23 | syl122anc 1377 |
. . . . . . . . . . . 12
⊢
((((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) ∧ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)) → 𝑥 = 𝑖) |
25 | | simpr 489 |
. . . . . . . . . . . . . 14
⊢
((((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖) |
26 | | simpllr 776 |
. . . . . . . . . . . . . 14
⊢
((((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) ∧ 𝑥 = 𝑖) → 𝑥 ∈ 𝐴) |
27 | 25, 26 | eqeltrrd 2854 |
. . . . . . . . . . . . 13
⊢
((((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) ∧ 𝑥 = 𝑖) → 𝑖 ∈ 𝐴) |
28 | | simplr 769 |
. . . . . . . . . . . . . 14
⊢
((((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) ∧ 𝑥 = 𝑖) → 𝑗 ∈ 𝐵) |
29 | 22 | eleq2d 2838 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑖 → (𝑗 ∈ 𝐵 ↔ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)) |
30 | 25, 29 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) ∧ 𝑥 = 𝑖) → (𝑗 ∈ 𝐵 ↔ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)) |
31 | 28, 30 | mpbid 235 |
. . . . . . . . . . . . 13
⊢
((((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) ∧ 𝑥 = 𝑖) → 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵) |
32 | 27, 31 | jca 516 |
. . . . . . . . . . . 12
⊢
((((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) ∧ 𝑥 = 𝑖) → (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)) |
33 | 24, 32 | impbida 801 |
. . . . . . . . . . 11
⊢
(((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) → ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵) ↔ 𝑥 = 𝑖)) |
34 | | equcom 2026 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑖 ↔ 𝑖 = 𝑥) |
35 | 33, 34 | syl6bb 291 |
. . . . . . . . . 10
⊢
(((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) → ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵) ↔ 𝑖 = 𝑥)) |
36 | 35 | abbidv 2823 |
. . . . . . . . 9
⊢
(((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) → {𝑖 ∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} = {𝑖 ∣ 𝑖 = 𝑥}) |
37 | | df-sn 4521 |
. . . . . . . . 9
⊢ {𝑥} = {𝑖 ∣ 𝑖 = 𝑥} |
38 | 36, 37 | eqtr4di 2812 |
. . . . . . . 8
⊢
(((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) → {𝑖 ∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} = {𝑥}) |
39 | 38 | unieqd 4810 |
. . . . . . 7
⊢
(((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) → ∪ {𝑖 ∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} = ∪ {𝑥}) |
40 | | vex 3414 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
41 | 40 | unisn 4818 |
. . . . . . 7
⊢ ∪ {𝑥}
= 𝑥 |
42 | 39, 41 | eqtrdi 2810 |
. . . . . 6
⊢
(((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) → ∪ {𝑖 ∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} = 𝑥) |
43 | | csbeq1 3809 |
. . . . . . 7
⊢ (∪ {𝑖
∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} = 𝑥 → ⦋∪ {𝑖
∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} / 𝑥⦌𝐵 = ⦋𝑥 / 𝑥⦌𝐵) |
44 | | csbid 3819 |
. . . . . . 7
⊢
⦋𝑥 /
𝑥⦌𝐵 = 𝐵 |
45 | 43, 44 | eqtrdi 2810 |
. . . . . 6
⊢ (∪ {𝑖
∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} = 𝑥 → ⦋∪ {𝑖
∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} / 𝑥⦌𝐵 = 𝐵) |
46 | 42, 45 | syl 17 |
. . . . 5
⊢
(((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑗 ∈ 𝐵) → ⦋∪ {𝑖
∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} / 𝑥⦌𝐵 = 𝐵) |
47 | 46 | ralrimiva 3114 |
. . . 4
⊢
((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) → ∀𝑗 ∈ 𝐵 ⦋∪
{𝑖 ∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} / 𝑥⦌𝐵 = 𝐵) |
48 | 1, 12, 14, 16, 47 | elabreximd 30367 |
. . 3
⊢
((Disj 𝑥
∈ 𝐴 𝐵 ∧ 𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) → ∀𝑗 ∈ 𝑦 ⦋∪
{𝑖 ∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} / 𝑥⦌𝐵 = 𝑦) |
49 | 48 | ralrimiva 3114 |
. 2
⊢
(Disj 𝑥
∈ 𝐴 𝐵 → ∀𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}∀𝑗 ∈ 𝑦 ⦋∪
{𝑖 ∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} / 𝑥⦌𝐵 = 𝑦) |
50 | | invdisj 5014 |
. 2
⊢
(∀𝑦 ∈
{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}∀𝑗 ∈ 𝑦 ⦋∪
{𝑖 ∣ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋𝑖 / 𝑥⦌𝐵)} / 𝑥⦌𝐵 = 𝑦 → Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑦) |
51 | 49, 50 | syl 17 |
1
⊢
(Disj 𝑥
∈ 𝐴 𝐵 → Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑦) |