Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abrexexd Structured version   Visualization version   GIF version

Theorem abrexexd 30430
Description: Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017.)
Hypotheses
Ref Expression
abrexexd.0 𝑥𝐴
abrexexd.1 (𝜑𝐴 ∈ V)
Assertion
Ref Expression
abrexexd (𝜑 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem abrexexd
StepHypRef Expression
1 rnopab 5797 . . 3 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 = 𝐵)}
2 df-mpt 5111 . . . 4 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
32rneqi 5780 . . 3 ran (𝑥𝐴𝐵) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
4 df-rex 3059 . . . 4 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥𝐴𝑦 = 𝐵))
54abbii 2803 . . 3 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 = 𝐵)}
61, 3, 53eqtr4i 2771 . 2 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
7 abrexexd.1 . . 3 (𝜑𝐴 ∈ V)
8 funmpt 6377 . . . 4 Fun (𝑥𝐴𝐵)
9 eqid 2738 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
109dmmpt 6072 . . . . 5 dom (𝑥𝐴𝐵) = {𝑥𝐴𝐵 ∈ V}
11 abrexexd.0 . . . . . 6 𝑥𝐴
1211rabexgfGS 30422 . . . . 5 (𝐴 ∈ V → {𝑥𝐴𝐵 ∈ V} ∈ V)
1310, 12eqeltrid 2837 . . . 4 (𝐴 ∈ V → dom (𝑥𝐴𝐵) ∈ V)
14 funex 6994 . . . 4 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ∈ V) → (𝑥𝐴𝐵) ∈ V)
158, 13, 14sylancr 590 . . 3 (𝐴 ∈ V → (𝑥𝐴𝐵) ∈ V)
16 rnexg 7637 . . 3 ((𝑥𝐴𝐵) ∈ V → ran (𝑥𝐴𝐵) ∈ V)
177, 15, 163syl 18 . 2 (𝜑 → ran (𝑥𝐴𝐵) ∈ V)
186, 17eqeltrrid 2838 1 (𝜑 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wex 1786  wcel 2114  {cab 2716  wnfc 2879  wrex 3054  {crab 3057  Vcvv 3398  {copab 5092  cmpt 5110  dom cdm 5525  ran crn 5526  Fun wfun 6333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7481
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347
This theorem is referenced by:  esumc  31591
  Copyright terms: Public domain W3C validator