Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abrexexd Structured version   Visualization version   GIF version

Theorem abrexexd 32445
Description: Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017.)
Hypotheses
Ref Expression
abrexexd.0 𝑥𝐴
abrexexd.1 (𝜑𝐴 ∈ V)
Assertion
Ref Expression
abrexexd (𝜑 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem abrexexd
StepHypRef Expression
1 rnopab 5921 . . 3 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 = 𝐵)}
2 df-mpt 5192 . . . 4 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
32rneqi 5904 . . 3 ran (𝑥𝐴𝐵) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
4 df-rex 3055 . . . 4 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥𝐴𝑦 = 𝐵))
54abbii 2797 . . 3 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 = 𝐵)}
61, 3, 53eqtr4i 2763 . 2 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
7 abrexexd.1 . . 3 (𝜑𝐴 ∈ V)
8 funmpt 6557 . . . 4 Fun (𝑥𝐴𝐵)
9 eqid 2730 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
109dmmpt 6216 . . . . 5 dom (𝑥𝐴𝐵) = {𝑥𝐴𝐵 ∈ V}
11 abrexexd.0 . . . . . 6 𝑥𝐴
1211rabexgfGS 32435 . . . . 5 (𝐴 ∈ V → {𝑥𝐴𝐵 ∈ V} ∈ V)
1310, 12eqeltrid 2833 . . . 4 (𝐴 ∈ V → dom (𝑥𝐴𝐵) ∈ V)
14 funex 7196 . . . 4 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ∈ V) → (𝑥𝐴𝐵) ∈ V)
158, 13, 14sylancr 587 . . 3 (𝐴 ∈ V → (𝑥𝐴𝐵) ∈ V)
16 rnexg 7881 . . 3 ((𝑥𝐴𝐵) ∈ V → ran (𝑥𝐴𝐵) ∈ V)
177, 15, 163syl 18 . 2 (𝜑 → ran (𝑥𝐴𝐵) ∈ V)
186, 17eqeltrrid 2834 1 (𝜑 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wnfc 2877  wrex 3054  {crab 3408  Vcvv 3450  {copab 5172  cmpt 5191  dom cdm 5641  ran crn 5642  Fun wfun 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by:  esumc  34048
  Copyright terms: Public domain W3C validator