![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abrexexd | Structured version Visualization version GIF version |
Description: Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017.) |
Ref | Expression |
---|---|
abrexexd.0 | ⊢ Ⅎ𝑥𝐴 |
abrexexd.1 | ⊢ (𝜑 → 𝐴 ∈ V) |
Ref | Expression |
---|---|
abrexexd | ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5950 | . . 3 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | df-mpt 5226 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
3 | 2 | rneqi 5933 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
4 | df-rex 3066 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
5 | 4 | abbii 2797 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
6 | 1, 3, 5 | 3eqtr4i 2765 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
7 | abrexexd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
8 | funmpt 6585 | . . . 4 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
9 | eqid 2727 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
10 | 9 | dmmpt 6238 | . . . . 5 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
11 | abrexexd.0 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
12 | 11 | rabexgfGS 32283 | . . . . 5 ⊢ (𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ∈ V) |
13 | 10, 12 | eqeltrid 2832 | . . . 4 ⊢ (𝐴 ∈ V → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
14 | funex 7225 | . . . 4 ⊢ ((Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
15 | 8, 13, 14 | sylancr 586 | . . 3 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
16 | rnexg 7904 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
17 | 7, 15, 16 | 3syl 18 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
18 | 6, 17 | eqeltrrid 2833 | 1 ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 {cab 2704 Ⅎwnfc 2878 ∃wrex 3065 {crab 3427 Vcvv 3469 {copab 5204 ↦ cmpt 5225 dom cdm 5672 ran crn 5673 Fun wfun 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 |
This theorem is referenced by: esumc 33606 |
Copyright terms: Public domain | W3C validator |