| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abrexexd | Structured version Visualization version GIF version | ||
| Description: Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017.) |
| Ref | Expression |
|---|---|
| abrexexd.0 | ⊢ Ⅎ𝑥𝐴 |
| abrexexd.1 | ⊢ (𝜑 → 𝐴 ∈ V) |
| Ref | Expression |
|---|---|
| abrexexd | ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnopab 5894 | . . 3 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | df-mpt 5173 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 3 | 2 | rneqi 5877 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 4 | df-rex 3057 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
| 5 | 4 | abbii 2798 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 6 | 1, 3, 5 | 3eqtr4i 2764 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| 7 | abrexexd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 8 | funmpt 6519 | . . . 4 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 9 | eqid 2731 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 10 | 9 | dmmpt 6187 | . . . . 5 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 11 | abrexexd.0 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 12 | 11 | rabexgfGS 32474 | . . . . 5 ⊢ (𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ∈ V) |
| 13 | 10, 12 | eqeltrid 2835 | . . . 4 ⊢ (𝐴 ∈ V → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| 14 | funex 7153 | . . . 4 ⊢ ((Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 15 | 8, 13, 14 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| 16 | rnexg 7832 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 17 | 7, 15, 16 | 3syl 18 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| 18 | 6, 17 | eqeltrrid 2836 | 1 ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 Ⅎwnfc 2879 ∃wrex 3056 {crab 3395 Vcvv 3436 {copab 5153 ↦ cmpt 5172 dom cdm 5616 ran crn 5617 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: esumc 34059 |
| Copyright terms: Public domain | W3C validator |