![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abrexexd | Structured version Visualization version GIF version |
Description: Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017.) |
Ref | Expression |
---|---|
abrexexd.0 | ⊢ Ⅎ𝑥𝐴 |
abrexexd.1 | ⊢ (𝜑 → 𝐴 ∈ V) |
Ref | Expression |
---|---|
abrexexd | ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5979 | . . 3 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | df-mpt 5250 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
3 | 2 | rneqi 5962 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
4 | df-rex 3077 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
5 | 4 | abbii 2812 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
6 | 1, 3, 5 | 3eqtr4i 2778 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
7 | abrexexd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
8 | funmpt 6616 | . . . 4 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
9 | eqid 2740 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
10 | 9 | dmmpt 6271 | . . . . 5 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
11 | abrexexd.0 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
12 | 11 | rabexgfGS 32527 | . . . . 5 ⊢ (𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ∈ V) |
13 | 10, 12 | eqeltrid 2848 | . . . 4 ⊢ (𝐴 ∈ V → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
14 | funex 7256 | . . . 4 ⊢ ((Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
15 | 8, 13, 14 | sylancr 586 | . . 3 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
16 | rnexg 7942 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
17 | 7, 15, 16 | 3syl 18 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
18 | 6, 17 | eqeltrrid 2849 | 1 ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 Ⅎwnfc 2893 ∃wrex 3076 {crab 3443 Vcvv 3488 {copab 5228 ↦ cmpt 5249 dom cdm 5700 ran crn 5701 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: esumc 34015 |
Copyright terms: Public domain | W3C validator |