Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abrexexd Structured version   Visualization version   GIF version

Theorem abrexexd 32495
Description: Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017.)
Hypotheses
Ref Expression
abrexexd.0 𝑥𝐴
abrexexd.1 (𝜑𝐴 ∈ V)
Assertion
Ref Expression
abrexexd (𝜑 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem abrexexd
StepHypRef Expression
1 rnopab 5939 . . 3 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 = 𝐵)}
2 df-mpt 5207 . . . 4 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
32rneqi 5922 . . 3 ran (𝑥𝐴𝐵) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
4 df-rex 3062 . . . 4 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥𝐴𝑦 = 𝐵))
54abbii 2803 . . 3 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 = 𝐵)}
61, 3, 53eqtr4i 2769 . 2 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
7 abrexexd.1 . . 3 (𝜑𝐴 ∈ V)
8 funmpt 6579 . . . 4 Fun (𝑥𝐴𝐵)
9 eqid 2736 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
109dmmpt 6234 . . . . 5 dom (𝑥𝐴𝐵) = {𝑥𝐴𝐵 ∈ V}
11 abrexexd.0 . . . . . 6 𝑥𝐴
1211rabexgfGS 32485 . . . . 5 (𝐴 ∈ V → {𝑥𝐴𝐵 ∈ V} ∈ V)
1310, 12eqeltrid 2839 . . . 4 (𝐴 ∈ V → dom (𝑥𝐴𝐵) ∈ V)
14 funex 7216 . . . 4 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ∈ V) → (𝑥𝐴𝐵) ∈ V)
158, 13, 14sylancr 587 . . 3 (𝐴 ∈ V → (𝑥𝐴𝐵) ∈ V)
16 rnexg 7903 . . 3 ((𝑥𝐴𝐵) ∈ V → ran (𝑥𝐴𝐵) ∈ V)
177, 15, 163syl 18 . 2 (𝜑 → ran (𝑥𝐴𝐵) ∈ V)
186, 17eqeltrrid 2840 1 (𝜑 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wnfc 2884  wrex 3061  {crab 3420  Vcvv 3464  {copab 5186  cmpt 5206  dom cdm 5659  ran crn 5660  Fun wfun 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544
This theorem is referenced by:  esumc  34087
  Copyright terms: Public domain W3C validator