Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjabrex Structured version   Visualization version   GIF version

Theorem disjabrex 31500
Description: Rewriting a disjoint collection into a partition of its image set. (Contributed by Thierry Arnoux, 30-Dec-2016.)
Assertion
Ref Expression
disjabrex (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjabrex
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfdisj1 5084 . . . 4 𝑥Disj 𝑥𝐴 𝐵
2 nfcv 2907 . . . . 5 𝑥𝑦
3 nfv 1917 . . . . . . . . . 10 𝑥 𝑖𝐴
4 nfcsb1v 3880 . . . . . . . . . . 11 𝑥𝑖 / 𝑥𝐵
54nfcri 2894 . . . . . . . . . 10 𝑥 𝑗𝑖 / 𝑥𝐵
63, 5nfan 1902 . . . . . . . . 9 𝑥(𝑖𝐴𝑗𝑖 / 𝑥𝐵)
76nfab 2913 . . . . . . . 8 𝑥{𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)}
87nfuni 4872 . . . . . . 7 𝑥 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)}
98nfcsb1 3879 . . . . . 6 𝑥 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵
109nfeq1 2922 . . . . 5 𝑥 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝑦
112, 10nfralw 3294 . . . 4 𝑥𝑗𝑦 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝑦
12 eqeq2 2748 . . . . 5 (𝑦 = 𝐵 → ( {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝑦 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝐵))
1312raleqbi1dv 3307 . . . 4 (𝑦 = 𝐵 → (∀𝑗𝑦 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝑦 ↔ ∀𝑗𝐵 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝐵))
14 vex 3449 . . . . 5 𝑦 ∈ V
1514a1i 11 . . . 4 (Disj 𝑥𝐴 𝐵𝑦 ∈ V)
16 simplll 773 . . . . . . . . . . . . 13 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)) → Disj 𝑥𝐴 𝐵)
17 simpllr 774 . . . . . . . . . . . . 13 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)) → 𝑥𝐴)
18 simprl 769 . . . . . . . . . . . . 13 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)) → 𝑖𝐴)
19 simplr 767 . . . . . . . . . . . . 13 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)) → 𝑗𝐵)
20 simprr 771 . . . . . . . . . . . . 13 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)) → 𝑗𝑖 / 𝑥𝐵)
21 csbeq1a 3869 . . . . . . . . . . . . . 14 (𝑥 = 𝑖𝐵 = 𝑖 / 𝑥𝐵)
224, 21disjif 31496 . . . . . . . . . . . . 13 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑖𝐴) ∧ (𝑗𝐵𝑗𝑖 / 𝑥𝐵)) → 𝑥 = 𝑖)
2316, 17, 18, 19, 20, 22syl122anc 1379 . . . . . . . . . . . 12 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)) → 𝑥 = 𝑖)
24 simpr 485 . . . . . . . . . . . . . 14 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖)
25 simpllr 774 . . . . . . . . . . . . . 14 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ 𝑥 = 𝑖) → 𝑥𝐴)
2624, 25eqeltrrd 2839 . . . . . . . . . . . . 13 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ 𝑥 = 𝑖) → 𝑖𝐴)
27 simplr 767 . . . . . . . . . . . . . 14 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ 𝑥 = 𝑖) → 𝑗𝐵)
2821eleq2d 2823 . . . . . . . . . . . . . . 15 (𝑥 = 𝑖 → (𝑗𝐵𝑗𝑖 / 𝑥𝐵))
2924, 28syl 17 . . . . . . . . . . . . . 14 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ 𝑥 = 𝑖) → (𝑗𝐵𝑗𝑖 / 𝑥𝐵))
3027, 29mpbid 231 . . . . . . . . . . . . 13 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ 𝑥 = 𝑖) → 𝑗𝑖 / 𝑥𝐵)
3126, 30jca 512 . . . . . . . . . . . 12 ((((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) ∧ 𝑥 = 𝑖) → (𝑖𝐴𝑗𝑖 / 𝑥𝐵))
3223, 31impbida 799 . . . . . . . . . . 11 (((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) → ((𝑖𝐴𝑗𝑖 / 𝑥𝐵) ↔ 𝑥 = 𝑖))
33 equcom 2021 . . . . . . . . . . 11 (𝑥 = 𝑖𝑖 = 𝑥)
3432, 33bitrdi 286 . . . . . . . . . 10 (((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) → ((𝑖𝐴𝑗𝑖 / 𝑥𝐵) ↔ 𝑖 = 𝑥))
3534abbidv 2805 . . . . . . . . 9 (((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) → {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} = {𝑖𝑖 = 𝑥})
36 df-sn 4587 . . . . . . . . 9 {𝑥} = {𝑖𝑖 = 𝑥}
3735, 36eqtr4di 2794 . . . . . . . 8 (((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) → {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} = {𝑥})
3837unieqd 4879 . . . . . . 7 (((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) → {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} = {𝑥})
39 unisnv 4888 . . . . . . 7 {𝑥} = 𝑥
4038, 39eqtrdi 2792 . . . . . 6 (((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) → {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} = 𝑥)
41 csbeq1 3858 . . . . . . 7 ( {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} = 𝑥 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝑥 / 𝑥𝐵)
42 csbid 3868 . . . . . . 7 𝑥 / 𝑥𝐵 = 𝐵
4341, 42eqtrdi 2792 . . . . . 6 ( {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} = 𝑥 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝐵)
4440, 43syl 17 . . . . 5 (((Disj 𝑥𝐴 𝐵𝑥𝐴) ∧ 𝑗𝐵) → {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝐵)
4544ralrimiva 3143 . . . 4 ((Disj 𝑥𝐴 𝐵𝑥𝐴) → ∀𝑗𝐵 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝐵)
461, 11, 13, 15, 45elabreximd 31436 . . 3 ((Disj 𝑥𝐴 𝐵𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → ∀𝑗𝑦 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝑦)
4746ralrimiva 3143 . 2 (Disj 𝑥𝐴 𝐵 → ∀𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}∀𝑗𝑦 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝑦)
48 invdisj 5089 . 2 (∀𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}∀𝑗𝑦 {𝑖 ∣ (𝑖𝐴𝑗𝑖 / 𝑥𝐵)} / 𝑥𝐵 = 𝑦Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
4947, 48syl 17 1 (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2713  wral 3064  wrex 3073  Vcvv 3445  csb 3855  {csn 4586   cuni 4865  Disj wdisj 5070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-sn 4587  df-pr 4589  df-uni 4866  df-disj 5071
This theorem is referenced by:  disjrnmpt  31503
  Copyright terms: Public domain W3C validator