![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrfilem | Structured version Visualization version GIF version |
Description: In a finite simple graph, the number of edges is finite iff the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
Ref | Expression |
---|---|
fusgredgfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgredgfi.e | ⊢ 𝐸 = (Edg‘𝐺) |
usgrfilem.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
Ref | Expression |
---|---|
usgrfilem | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrfilem.f | . . 3 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
2 | rabfi 9271 | . . 3 ⊢ (𝐸 ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ∈ Fin) | |
3 | 1, 2 | eqeltrid 2831 | . 2 ⊢ (𝐸 ∈ Fin → 𝐹 ∈ Fin) |
4 | uncom 4148 | . . . . 5 ⊢ (𝐹 ∪ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹) | |
5 | eqid 2726 | . . . . . 6 ⊢ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} | |
6 | 5, 1 | elnelun 4384 | . . . . 5 ⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹) = 𝐸 |
7 | 4, 6 | eqtr2i 2755 | . . . 4 ⊢ 𝐸 = (𝐹 ∪ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) |
8 | fusgredgfi.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
9 | fusgredgfi.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
10 | 8, 9 | fusgredgfi 29090 | . . . . . 6 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
11 | 10 | anim1ci 615 | . . . . 5 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐹 ∈ Fin) → (𝐹 ∈ Fin ∧ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin)) |
12 | unfi 9174 | . . . . 5 ⊢ ((𝐹 ∈ Fin ∧ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) → (𝐹 ∪ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ∈ Fin) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐹 ∈ Fin) → (𝐹 ∪ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ∈ Fin) |
14 | 7, 13 | eqeltrid 2831 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin) |
15 | 14 | ex 412 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐹 ∈ Fin → 𝐸 ∈ Fin)) |
16 | 3, 15 | impbid2 225 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∉ wnel 3040 {crab 3426 ∪ cun 3941 ‘cfv 6537 Fincfn 8941 Vtxcvtx 28764 Edgcedg 28815 FinUSGraphcfusgr 29081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-oadd 8471 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13491 df-hash 14296 df-edg 28816 df-upgr 28850 df-uspgr 28918 df-usgr 28919 df-fusgr 29082 |
This theorem is referenced by: fusgrfisstep 29094 cusgrsizeinds 29218 |
Copyright terms: Public domain | W3C validator |