MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrfilem Structured version   Visualization version   GIF version

Theorem usgrfilem 29308
Description: In a finite simple graph, the number of edges is finite iff the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 9-Nov-2020.)
Hypotheses
Ref Expression
fusgredgfi.v 𝑉 = (Vtx‘𝐺)
fusgredgfi.e 𝐸 = (Edg‘𝐺)
usgrfilem.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
usgrfilem ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hint:   𝐹(𝑒)

Proof of Theorem usgrfilem
StepHypRef Expression
1 usgrfilem.f . . 3 𝐹 = {𝑒𝐸𝑁𝑒}
2 rabfi 9190 . . 3 (𝐸 ∈ Fin → {𝑒𝐸𝑁𝑒} ∈ Fin)
31, 2eqeltrid 2832 . 2 (𝐸 ∈ Fin → 𝐹 ∈ Fin)
4 uncom 4117 . . . . 5 (𝐹 ∪ {𝑒𝐸𝑁𝑒}) = ({𝑒𝐸𝑁𝑒} ∪ 𝐹)
5 eqid 2729 . . . . . 6 {𝑒𝐸𝑁𝑒} = {𝑒𝐸𝑁𝑒}
65, 1elnelun 4352 . . . . 5 ({𝑒𝐸𝑁𝑒} ∪ 𝐹) = 𝐸
74, 6eqtr2i 2753 . . . 4 𝐸 = (𝐹 ∪ {𝑒𝐸𝑁𝑒})
8 fusgredgfi.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
9 fusgredgfi.e . . . . . . 7 𝐸 = (Edg‘𝐺)
108, 9fusgredgfi 29306 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ∈ Fin)
1110anim1ci 616 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ 𝐹 ∈ Fin) → (𝐹 ∈ Fin ∧ {𝑒𝐸𝑁𝑒} ∈ Fin))
12 unfi 9112 . . . . 5 ((𝐹 ∈ Fin ∧ {𝑒𝐸𝑁𝑒} ∈ Fin) → (𝐹 ∪ {𝑒𝐸𝑁𝑒}) ∈ Fin)
1311, 12syl 17 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ 𝐹 ∈ Fin) → (𝐹 ∪ {𝑒𝐸𝑁𝑒}) ∈ Fin)
147, 13eqeltrid 2832 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin)
1514ex 412 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝐹 ∈ Fin → 𝐸 ∈ Fin))
163, 15impbid2 226 1 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wnel 3029  {crab 3402  cun 3909  cfv 6499  Fincfn 8895  Vtxcvtx 28977  Edgcedg 29028  FinUSGraphcfusgr 29297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9832  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-n0 12421  df-xnn0 12494  df-z 12508  df-uz 12772  df-fz 13447  df-hash 14274  df-edg 29029  df-upgr 29063  df-uspgr 29131  df-usgr 29132  df-fusgr 29298
This theorem is referenced by:  fusgrfisstep  29310  cusgrsizeinds  29434
  Copyright terms: Public domain W3C validator