![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrfilem | Structured version Visualization version GIF version |
Description: In a finite simple graph, the number of edges is finite iff the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
Ref | Expression |
---|---|
fusgredgfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgredgfi.e | ⊢ 𝐸 = (Edg‘𝐺) |
usgrfilem.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
Ref | Expression |
---|---|
usgrfilem | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrfilem.f | . . 3 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
2 | rabfi 8427 | . . 3 ⊢ (𝐸 ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ∈ Fin) | |
3 | 1, 2 | syl5eqel 2882 | . 2 ⊢ (𝐸 ∈ Fin → 𝐹 ∈ Fin) |
4 | uncom 3955 | . . . . 5 ⊢ (𝐹 ∪ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹) | |
5 | eqid 2799 | . . . . . 6 ⊢ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} | |
6 | 5, 1 | elnelun 4162 | . . . . 5 ⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹) = 𝐸 |
7 | 4, 6 | eqtr2i 2822 | . . . 4 ⊢ 𝐸 = (𝐹 ∪ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) |
8 | fusgredgfi.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
9 | fusgredgfi.e | . . . . . . . 8 ⊢ 𝐸 = (Edg‘𝐺) | |
10 | 8, 9 | fusgredgfi 26559 | . . . . . . 7 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
11 | 10 | anim1i 609 | . . . . . 6 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐹 ∈ Fin) → ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin ∧ 𝐹 ∈ Fin)) |
12 | 11 | ancomd 454 | . . . . 5 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐹 ∈ Fin) → (𝐹 ∈ Fin ∧ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin)) |
13 | unfi 8469 | . . . . 5 ⊢ ((𝐹 ∈ Fin ∧ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) → (𝐹 ∪ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ∈ Fin) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐹 ∈ Fin) → (𝐹 ∪ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ∈ Fin) |
15 | 7, 14 | syl5eqel 2882 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin) |
16 | 15 | ex 402 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐹 ∈ Fin → 𝐸 ∈ Fin)) |
17 | 3, 16 | impbid2 218 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∉ wnel 3074 {crab 3093 ∪ cun 3767 ‘cfv 6101 Fincfn 8195 Vtxcvtx 26231 Edgcedg 26282 FinUSGraphcfusgr 26550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-card 9051 df-cda 9278 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-n0 11581 df-xnn0 11653 df-z 11667 df-uz 11931 df-fz 12581 df-hash 13371 df-edg 26283 df-upgr 26317 df-uspgr 26386 df-usgr 26387 df-fusgr 26551 |
This theorem is referenced by: fusgrfisstep 26563 cusgrsizeinds 26702 |
Copyright terms: Public domain | W3C validator |