![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elprneb | Structured version Visualization version GIF version |
Description: An element of a proper unordered pair is the first element iff it is not the second element. (Contributed by AV, 18-Jun-2020.) |
Ref | Expression |
---|---|
elprneb | ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐵 ≠ 𝐶) → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4651 | . . 3 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
2 | neeq1 3004 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐵 ≠ 𝐶 ↔ 𝐴 ≠ 𝐶)) | |
3 | 2 | eqcoms 2741 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐵 ≠ 𝐶 ↔ 𝐴 ≠ 𝐶)) |
4 | pm5.1 823 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 ≠ 𝐶) → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶)) | |
5 | 4 | ex 414 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶))) |
6 | 3, 5 | sylbid 239 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐵 ≠ 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶))) |
7 | neeq2 3005 | . . . . 5 ⊢ (𝐴 = 𝐶 → (𝐵 ≠ 𝐴 ↔ 𝐵 ≠ 𝐶)) | |
8 | nesym 2998 | . . . . . . . 8 ⊢ (𝐵 ≠ 𝐴 ↔ ¬ 𝐴 = 𝐵) | |
9 | pm5.1 823 | . . . . . . . 8 ⊢ ((𝐴 = 𝐶 ∧ ¬ 𝐴 = 𝐵) → (𝐴 = 𝐶 ↔ ¬ 𝐴 = 𝐵)) | |
10 | 8, 9 | sylan2b 595 | . . . . . . 7 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 ≠ 𝐴) → (𝐴 = 𝐶 ↔ ¬ 𝐴 = 𝐵)) |
11 | 10 | necon2abid 2984 | . . . . . 6 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 ≠ 𝐴) → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶)) |
12 | 11 | ex 414 | . . . . 5 ⊢ (𝐴 = 𝐶 → (𝐵 ≠ 𝐴 → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶))) |
13 | 7, 12 | sylbird 260 | . . . 4 ⊢ (𝐴 = 𝐶 → (𝐵 ≠ 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶))) |
14 | 6, 13 | jaoi 856 | . . 3 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → (𝐵 ≠ 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶))) |
15 | 1, 14 | syl 17 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐵 ≠ 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶))) |
16 | 15 | imp 408 | 1 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐵 ≠ 𝐶) → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 {cpr 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-v 3477 df-un 3954 df-sn 4630 df-pr 4632 |
This theorem is referenced by: dfodd5 46328 |
Copyright terms: Public domain | W3C validator |