Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elprneb Structured version   Visualization version   GIF version

Theorem elprneb 42102
Description: An element of a proper unordered pair is the first element iff it is not the second element. (Contributed by AV, 18-Jun-2020.)
Assertion
Ref Expression
elprneb ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐵𝐶) → (𝐴 = 𝐵𝐴𝐶))

Proof of Theorem elprneb
StepHypRef Expression
1 elpri 4420 . . 3 (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
2 neeq1 3031 . . . . . 6 (𝐵 = 𝐴 → (𝐵𝐶𝐴𝐶))
32eqcoms 2786 . . . . 5 (𝐴 = 𝐵 → (𝐵𝐶𝐴𝐶))
4 pm5.1 815 . . . . . 6 ((𝐴 = 𝐵𝐴𝐶) → (𝐴 = 𝐵𝐴𝐶))
54ex 403 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐶 → (𝐴 = 𝐵𝐴𝐶)))
63, 5sylbid 232 . . . 4 (𝐴 = 𝐵 → (𝐵𝐶 → (𝐴 = 𝐵𝐴𝐶)))
7 neeq2 3032 . . . . 5 (𝐴 = 𝐶 → (𝐵𝐴𝐵𝐶))
8 nesym 3025 . . . . . . . 8 (𝐵𝐴 ↔ ¬ 𝐴 = 𝐵)
9 pm5.1 815 . . . . . . . 8 ((𝐴 = 𝐶 ∧ ¬ 𝐴 = 𝐵) → (𝐴 = 𝐶 ↔ ¬ 𝐴 = 𝐵))
108, 9sylan2b 587 . . . . . . 7 ((𝐴 = 𝐶𝐵𝐴) → (𝐴 = 𝐶 ↔ ¬ 𝐴 = 𝐵))
1110necon2abid 3011 . . . . . 6 ((𝐴 = 𝐶𝐵𝐴) → (𝐴 = 𝐵𝐴𝐶))
1211ex 403 . . . . 5 (𝐴 = 𝐶 → (𝐵𝐴 → (𝐴 = 𝐵𝐴𝐶)))
137, 12sylbird 252 . . . 4 (𝐴 = 𝐶 → (𝐵𝐶 → (𝐴 = 𝐵𝐴𝐶)))
146, 13jaoi 846 . . 3 ((𝐴 = 𝐵𝐴 = 𝐶) → (𝐵𝐶 → (𝐴 = 𝐵𝐴𝐶)))
151, 14syl 17 . 2 (𝐴 ∈ {𝐵, 𝐶} → (𝐵𝐶 → (𝐴 = 𝐵𝐴𝐶)))
1615imp 397 1 ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐵𝐶) → (𝐴 = 𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2107  wne 2969  {cpr 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-v 3400  df-un 3797  df-sn 4399  df-pr 4401
This theorem is referenced by:  dfodd5  42601
  Copyright terms: Public domain W3C validator