Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  euabsneu Structured version   Visualization version   GIF version

Theorem euabsneu 47024
Description: Another way to express existential uniqueness of a wff 𝜑: its associated class abstraction {𝑥𝜑} is a singleton. Variant of euabsn2 4706 using existential uniqueness for the singleton element instead of existence only. (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
euabsneu (∃!𝑥𝜑 ↔ ∃!𝑦{𝑥𝜑} = {𝑦})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem euabsneu
StepHypRef Expression
1 mosneq 4823 . . . 4 ∃*𝑦{𝑦} = {𝑥𝜑}
2 eqcom 2743 . . . . 5 ({𝑦} = {𝑥𝜑} ↔ {𝑥𝜑} = {𝑦})
32mobii 2548 . . . 4 (∃*𝑦{𝑦} = {𝑥𝜑} ↔ ∃*𝑦{𝑥𝜑} = {𝑦})
41, 3mpbi 230 . . 3 ∃*𝑦{𝑥𝜑} = {𝑦}
54biantru 529 . 2 (∃𝑦{𝑥𝜑} = {𝑦} ↔ (∃𝑦{𝑥𝜑} = {𝑦} ∧ ∃*𝑦{𝑥𝜑} = {𝑦}))
6 euabsn2 4706 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
7 df-eu 2569 . 2 (∃!𝑦{𝑥𝜑} = {𝑦} ↔ (∃𝑦{𝑥𝜑} = {𝑦} ∧ ∃*𝑦{𝑥𝜑} = {𝑦}))
85, 6, 73bitr4i 303 1 (∃!𝑥𝜑 ↔ ∃!𝑦{𝑥𝜑} = {𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  ∃*wmo 2538  ∃!weu 2568  {cab 2714  {csn 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-sn 4607
This theorem is referenced by:  reuaiotaiota  47084
  Copyright terms: Public domain W3C validator