Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  euabsneu Structured version   Visualization version   GIF version

Theorem euabsneu 47045
Description: Another way to express existential uniqueness of a wff 𝜑: its associated class abstraction {𝑥𝜑} is a singleton. Variant of euabsn2 4724 using existential uniqueness for the singleton element instead of existence only. (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
euabsneu (∃!𝑥𝜑 ↔ ∃!𝑦{𝑥𝜑} = {𝑦})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem euabsneu
StepHypRef Expression
1 mosneq 4841 . . . 4 ∃*𝑦{𝑦} = {𝑥𝜑}
2 eqcom 2743 . . . . 5 ({𝑦} = {𝑥𝜑} ↔ {𝑥𝜑} = {𝑦})
32mobii 2547 . . . 4 (∃*𝑦{𝑦} = {𝑥𝜑} ↔ ∃*𝑦{𝑥𝜑} = {𝑦})
41, 3mpbi 230 . . 3 ∃*𝑦{𝑥𝜑} = {𝑦}
54biantru 529 . 2 (∃𝑦{𝑥𝜑} = {𝑦} ↔ (∃𝑦{𝑥𝜑} = {𝑦} ∧ ∃*𝑦{𝑥𝜑} = {𝑦}))
6 euabsn2 4724 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
7 df-eu 2568 . 2 (∃!𝑦{𝑥𝜑} = {𝑦} ↔ (∃𝑦{𝑥𝜑} = {𝑦} ∧ ∃*𝑦{𝑥𝜑} = {𝑦}))
85, 6, 73bitr4i 303 1 (∃!𝑥𝜑 ↔ ∃!𝑦{𝑥𝜑} = {𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wex 1778  ∃*wmo 2537  ∃!weu 2567  {cab 2713  {csn 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-sn 4626
This theorem is referenced by:  reuaiotaiota  47105
  Copyright terms: Public domain W3C validator