Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > euabsneu | Structured version Visualization version GIF version |
Description: Another way to express existential uniqueness of a wff 𝜑: its associated class abstraction {𝑥 ∣ 𝜑} is a singleton. Variant of euabsn2 4666 using existential uniqueness for the singleton element instead of existence only. (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
euabsneu | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mosneq 4778 | . . . 4 ⊢ ∃*𝑦{𝑦} = {𝑥 ∣ 𝜑} | |
2 | eqcom 2746 | . . . . 5 ⊢ ({𝑦} = {𝑥 ∣ 𝜑} ↔ {𝑥 ∣ 𝜑} = {𝑦}) | |
3 | 2 | mobii 2549 | . . . 4 ⊢ (∃*𝑦{𝑦} = {𝑥 ∣ 𝜑} ↔ ∃*𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
4 | 1, 3 | mpbi 229 | . . 3 ⊢ ∃*𝑦{𝑥 ∣ 𝜑} = {𝑦} |
5 | 4 | biantru 529 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ∧ ∃*𝑦{𝑥 ∣ 𝜑} = {𝑦})) |
6 | euabsn2 4666 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
7 | df-eu 2570 | . 2 ⊢ (∃!𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ∧ ∃*𝑦{𝑥 ∣ 𝜑} = {𝑦})) | |
8 | 5, 6, 7 | 3bitr4i 302 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1541 ∃wex 1785 ∃*wmo 2539 ∃!weu 2569 {cab 2716 {csn 4566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-sn 4567 |
This theorem is referenced by: reuaiotaiota 44531 |
Copyright terms: Public domain | W3C validator |