Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  euabsneu Structured version   Visualization version   GIF version

Theorem euabsneu 45738
Description: Another way to express existential uniqueness of a wff 𝜑: its associated class abstraction {𝑥𝜑} is a singleton. Variant of euabsn2 4730 using existential uniqueness for the singleton element instead of existence only. (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
euabsneu (∃!𝑥𝜑 ↔ ∃!𝑦{𝑥𝜑} = {𝑦})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem euabsneu
StepHypRef Expression
1 mosneq 4844 . . . 4 ∃*𝑦{𝑦} = {𝑥𝜑}
2 eqcom 2740 . . . . 5 ({𝑦} = {𝑥𝜑} ↔ {𝑥𝜑} = {𝑦})
32mobii 2543 . . . 4 (∃*𝑦{𝑦} = {𝑥𝜑} ↔ ∃*𝑦{𝑥𝜑} = {𝑦})
41, 3mpbi 229 . . 3 ∃*𝑦{𝑥𝜑} = {𝑦}
54biantru 531 . 2 (∃𝑦{𝑥𝜑} = {𝑦} ↔ (∃𝑦{𝑥𝜑} = {𝑦} ∧ ∃*𝑦{𝑥𝜑} = {𝑦}))
6 euabsn2 4730 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
7 df-eu 2564 . 2 (∃!𝑦{𝑥𝜑} = {𝑦} ↔ (∃𝑦{𝑥𝜑} = {𝑦} ∧ ∃*𝑦{𝑥𝜑} = {𝑦}))
85, 6, 73bitr4i 303 1 (∃!𝑥𝜑 ↔ ∃!𝑦{𝑥𝜑} = {𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wex 1782  ∃*wmo 2533  ∃!weu 2563  {cab 2710  {csn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-sn 4630
This theorem is referenced by:  reuaiotaiota  45796
  Copyright terms: Public domain W3C validator