Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > euabsneu | Structured version Visualization version GIF version |
Description: Another way to express existential uniqueness of a wff 𝜑: its associated class abstraction {𝑥 ∣ 𝜑} is a singleton. Variant of euabsn2 4665 using existential uniqueness for the singleton element instead of existence only. (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
euabsneu | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mosneq 4779 | . . . 4 ⊢ ∃*𝑦{𝑦} = {𝑥 ∣ 𝜑} | |
2 | eqcom 2743 | . . . . 5 ⊢ ({𝑦} = {𝑥 ∣ 𝜑} ↔ {𝑥 ∣ 𝜑} = {𝑦}) | |
3 | 2 | mobii 2546 | . . . 4 ⊢ (∃*𝑦{𝑦} = {𝑥 ∣ 𝜑} ↔ ∃*𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
4 | 1, 3 | mpbi 229 | . . 3 ⊢ ∃*𝑦{𝑥 ∣ 𝜑} = {𝑦} |
5 | 4 | biantru 531 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ∧ ∃*𝑦{𝑥 ∣ 𝜑} = {𝑦})) |
6 | euabsn2 4665 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
7 | df-eu 2567 | . 2 ⊢ (∃!𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ∧ ∃*𝑦{𝑥 ∣ 𝜑} = {𝑦})) | |
8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 ∃wex 1779 ∃*wmo 2536 ∃!weu 2566 {cab 2713 {csn 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-sn 4566 |
This theorem is referenced by: reuaiotaiota 44638 |
Copyright terms: Public domain | W3C validator |