| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > euabsneu | Structured version Visualization version GIF version | ||
| Description: Another way to express existential uniqueness of a wff 𝜑: its associated class abstraction {𝑥 ∣ 𝜑} is a singleton. Variant of euabsn2 4673 using existential uniqueness for the singleton element instead of existence only. (Contributed by AV, 24-Aug-2022.) |
| Ref | Expression |
|---|---|
| euabsneu | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mosneq 4789 | . . . 4 ⊢ ∃*𝑦{𝑦} = {𝑥 ∣ 𝜑} | |
| 2 | eqcom 2738 | . . . . 5 ⊢ ({𝑦} = {𝑥 ∣ 𝜑} ↔ {𝑥 ∣ 𝜑} = {𝑦}) | |
| 3 | 2 | mobii 2543 | . . . 4 ⊢ (∃*𝑦{𝑦} = {𝑥 ∣ 𝜑} ↔ ∃*𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
| 4 | 1, 3 | mpbi 230 | . . 3 ⊢ ∃*𝑦{𝑥 ∣ 𝜑} = {𝑦} |
| 5 | 4 | biantru 529 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ∧ ∃*𝑦{𝑥 ∣ 𝜑} = {𝑦})) |
| 6 | euabsn2 4673 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
| 7 | df-eu 2564 | . 2 ⊢ (∃!𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ∧ ∃*𝑦{𝑥 ∣ 𝜑} = {𝑦})) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∃*wmo 2533 ∃!weu 2563 {cab 2709 {csn 4571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sn 4572 |
| This theorem is referenced by: reuaiotaiota 47119 |
| Copyright terms: Public domain | W3C validator |