| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2abid | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 18-Jul-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon2abid | ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | necon2abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) | |
| 3 | 2 | necon3abid 2961 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ ¬ 𝜓)) |
| 4 | 1, 3 | bitr4id 290 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: sossfld 6159 funeldmb 7334 fin23lem24 10275 isf32lem4 10309 sqgt0sr 11059 leltne 11263 xrleltne 13105 xrltne 13123 ge0nemnf 13133 xlt2add 13220 supxrbnd 13288 supxrre2 13291 ioopnfsup 13826 icopnfsup 13827 xblpnfps 24283 xblpnf 24284 nmoreltpnf 30698 nmopreltpnf 31798 elprneb 47030 |
| Copyright terms: Public domain | W3C validator |