Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon2abid | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 18-Jul-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
Ref | Expression |
---|---|
necon2abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
Ref | Expression |
---|---|
necon2abid | ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
2 | necon2abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) | |
3 | 2 | necon3abid 2980 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ ¬ 𝜓)) |
4 | 1, 3 | bitr4id 290 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2944 |
This theorem is referenced by: sossfld 6089 fin23lem24 10078 isf32lem4 10112 sqgt0sr 10862 leltne 11064 xrleltne 12879 xrltne 12897 ge0nemnf 12907 xlt2add 12994 supxrbnd 13062 supxrre2 13065 ioopnfsup 13584 icopnfsup 13585 xblpnfps 23548 xblpnf 23549 nmoreltpnf 29131 nmopreltpnf 30231 funeldmb 33737 elprneb 44523 |
Copyright terms: Public domain | W3C validator |