MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2abid Structured version   Visualization version   GIF version

Theorem necon2abid 2989
Description: Contrapositive deduction for inequality. (Contributed by NM, 18-Jul-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.)
Hypothesis
Ref Expression
necon2abid.1 (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))
Assertion
Ref Expression
necon2abid (𝜑 → (𝜓𝐴𝐵))

Proof of Theorem necon2abid
StepHypRef Expression
1 notnotb 315 . 2 (𝜓 ↔ ¬ ¬ 𝜓)
2 necon2abid.1 . . 3 (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))
32necon3abid 2983 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ ¬ 𝜓))
41, 3bitr4id 290 1 (𝜑 → (𝜓𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wne 2946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2947
This theorem is referenced by:  sossfld  6217  funeldmb  7395  fin23lem24  10391  isf32lem4  10425  sqgt0sr  11175  leltne  11379  xrleltne  13207  xrltne  13225  ge0nemnf  13235  xlt2add  13322  supxrbnd  13390  supxrre2  13393  ioopnfsup  13915  icopnfsup  13916  xblpnfps  24426  xblpnf  24427  nmoreltpnf  30801  nmopreltpnf  31901  elprneb  46944
  Copyright terms: Public domain W3C validator