MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2abid Structured version   Visualization version   GIF version

Theorem necon2abid 2970
Description: Contrapositive deduction for inequality. (Contributed by NM, 18-Jul-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.)
Hypothesis
Ref Expression
necon2abid.1 (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))
Assertion
Ref Expression
necon2abid (𝜑 → (𝜓𝐴𝐵))

Proof of Theorem necon2abid
StepHypRef Expression
1 notnotb 315 . 2 (𝜓 ↔ ¬ ¬ 𝜓)
2 necon2abid.1 . . 3 (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))
32necon3abid 2964 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ ¬ 𝜓))
41, 3bitr4id 290 1 (𝜑 → (𝜓𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wne 2928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2929
This theorem is referenced by:  sossfld  6133  funeldmb  7293  fin23lem24  10210  isf32lem4  10244  sqgt0sr  10994  leltne  11199  xrleltne  13041  xrltne  13059  ge0nemnf  13069  xlt2add  13156  supxrbnd  13224  supxrre2  13227  ioopnfsup  13765  icopnfsup  13766  xblpnfps  24308  xblpnf  24309  nmoreltpnf  30744  nmopreltpnf  31844  elprneb  47059
  Copyright terms: Public domain W3C validator