MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2abid Structured version   Visualization version   GIF version

Theorem necon2abid 2968
Description: Contrapositive deduction for inequality. (Contributed by NM, 18-Jul-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.)
Hypothesis
Ref Expression
necon2abid.1 (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))
Assertion
Ref Expression
necon2abid (𝜑 → (𝜓𝐴𝐵))

Proof of Theorem necon2abid
StepHypRef Expression
1 notnotb 315 . 2 (𝜓 ↔ ¬ ¬ 𝜓)
2 necon2abid.1 . . 3 (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))
32necon3abid 2962 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ ¬ 𝜓))
41, 3bitr4id 290 1 (𝜑 → (𝜓𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wne 2926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2927
This theorem is referenced by:  sossfld  6162  funeldmb  7337  fin23lem24  10282  isf32lem4  10316  sqgt0sr  11066  leltne  11270  xrleltne  13112  xrltne  13130  ge0nemnf  13140  xlt2add  13227  supxrbnd  13295  supxrre2  13298  ioopnfsup  13833  icopnfsup  13834  xblpnfps  24290  xblpnf  24291  nmoreltpnf  30705  nmopreltpnf  31805  elprneb  47034
  Copyright terms: Public domain W3C validator