| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2abid | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 18-Jul-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon2abid | ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | necon2abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) | |
| 3 | 2 | necon3abid 2965 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ ¬ 𝜓)) |
| 4 | 1, 3 | bitr4id 290 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: sossfld 6138 funeldmb 7299 fin23lem24 10220 isf32lem4 10254 sqgt0sr 11004 leltne 11209 xrleltne 13046 xrltne 13064 ge0nemnf 13074 xlt2add 13161 supxrbnd 13229 supxrre2 13232 ioopnfsup 13770 icopnfsup 13771 xblpnfps 24311 xblpnf 24312 nmoreltpnf 30751 nmopreltpnf 31851 elprneb 47154 |
| Copyright terms: Public domain | W3C validator |