| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2abid | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 18-Jul-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon2abid | ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | necon2abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) | |
| 3 | 2 | necon3abid 2968 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ ¬ 𝜓)) |
| 4 | 1, 3 | bitr4id 290 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: sossfld 6175 funeldmb 7352 fin23lem24 10336 isf32lem4 10370 sqgt0sr 11120 leltne 11324 xrleltne 13161 xrltne 13179 ge0nemnf 13189 xlt2add 13276 supxrbnd 13344 supxrre2 13347 ioopnfsup 13881 icopnfsup 13882 xblpnfps 24334 xblpnf 24335 nmoreltpnf 30750 nmopreltpnf 31850 elprneb 47058 |
| Copyright terms: Public domain | W3C validator |