| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2abid | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 18-Jul-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon2abid | ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | necon2abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) | |
| 3 | 2 | necon3abid 2964 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ ¬ 𝜓)) |
| 4 | 1, 3 | bitr4id 290 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: sossfld 6133 funeldmb 7293 fin23lem24 10210 isf32lem4 10244 sqgt0sr 10994 leltne 11199 xrleltne 13041 xrltne 13059 ge0nemnf 13069 xlt2add 13156 supxrbnd 13224 supxrre2 13227 ioopnfsup 13765 icopnfsup 13766 xblpnfps 24308 xblpnf 24309 nmoreltpnf 30744 nmopreltpnf 31844 elprneb 47059 |
| Copyright terms: Public domain | W3C validator |