MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2abid Structured version   Visualization version   GIF version

Theorem necon2abid 2986
Description: Contrapositive deduction for inequality. (Contributed by NM, 18-Jul-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.)
Hypothesis
Ref Expression
necon2abid.1 (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))
Assertion
Ref Expression
necon2abid (𝜑 → (𝜓𝐴𝐵))

Proof of Theorem necon2abid
StepHypRef Expression
1 notnotb 315 . 2 (𝜓 ↔ ¬ ¬ 𝜓)
2 necon2abid.1 . . 3 (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))
32necon3abid 2980 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ ¬ 𝜓))
41, 3bitr4id 290 1 (𝜑 → (𝜓𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2944
This theorem is referenced by:  sossfld  6089  fin23lem24  10078  isf32lem4  10112  sqgt0sr  10862  leltne  11064  xrleltne  12879  xrltne  12897  ge0nemnf  12907  xlt2add  12994  supxrbnd  13062  supxrre2  13065  ioopnfsup  13584  icopnfsup  13585  xblpnfps  23548  xblpnf  23549  nmoreltpnf  29131  nmopreltpnf  30231  funeldmb  33737  elprneb  44523
  Copyright terms: Public domain W3C validator