Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) (Proof shortened by Wolf Lammen, 18-Nov-2019.) |
Ref | Expression |
---|---|
neeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1 | neeq2d 3004 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-ne 2944 |
This theorem is referenced by: psseq2 4023 prproe 4837 fprg 7027 f1dom3el3dif 7142 f1prex 7156 dfac5 9884 kmlem4 9909 kmlem14 9919 1re 10975 hashge2el2difr 14195 hashdmpropge2 14197 dvdsle 16019 sgrp2rid2ex 18566 isirred 19941 isnzr2 20534 dmatelnd 21645 mdetdiaglem 21747 mdetunilem1 21761 mdetunilem2 21762 maducoeval2 21789 hausnei 22479 regr1lem2 22891 xrhmeo 24109 axtg5seg 26826 axtgupdim2 26832 axtgeucl 26833 ishlg 26963 tglnpt2 27002 axlowdim1 27327 umgrvad2edg 27580 2pthdlem1 28295 3pthdlem1 28528 upgr3v3e3cycl 28544 upgr4cycl4dv4e 28549 eupth2lem3lem4 28595 3cyclfrgrrn1 28649 4cycl2vnunb 28654 numclwwlkovh 28737 numclwwlkovq 28738 numclwwlk2lem1 28740 numclwlk2lem2f 28741 superpos 30716 signswch 32540 axtgupdim2ALTV 32648 xpord2lem 33789 xpord3lem 33795 dfrdg4 34253 fvray 34443 linedegen 34445 fvline 34446 linethru 34455 hilbert1.1 34456 knoppndvlem21 34712 poimirlem1 35778 hlsuprexch 37395 3dim1lem5 37480 llni2 37526 lplni2 37551 2llnjN 37581 lvoli2 37595 2lplnj 37634 islinei 37754 cdleme40n 38482 cdlemg33b 38721 ax6e2ndeq 42179 ax6e2ndeqVD 42529 ax6e2ndeqALT 42551 refsum2cnlem1 42580 stoweidlem43 43584 nnfoctbdjlem 43993 elprneb 44523 ichnreuop 44924 inlinecirc02plem 46132 |
Copyright terms: Public domain | W3C validator |