![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) (Proof shortened by Wolf Lammen, 18-Nov-2019.) |
Ref | Expression |
---|---|
neeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1 | neeq2d 3007 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 |
This theorem is referenced by: psseq2 4114 prproe 4929 fprg 7189 f1dom3el3dif 7306 f1prex 7320 xpord2lem 8183 xpord3lem 8190 dfac5 10198 kmlem4 10223 kmlem14 10233 1re 11290 hashge2el2difr 14530 hashdmpropge2 14532 dvdsle 16358 sgrp2rid2ex 18962 isirred 20445 isnzr2 20544 dmatelnd 22523 mdetdiaglem 22625 mdetunilem1 22639 mdetunilem2 22640 maducoeval2 22667 hausnei 23357 regr1lem2 23769 xrhmeo 24996 axtg5seg 28491 axtgupdim2 28497 axtgeucl 28498 ishlg 28628 tglnpt2 28667 axlowdim1 28992 umgrvad2edg 29248 2pthdlem1 29963 3pthdlem1 30196 upgr3v3e3cycl 30212 upgr4cycl4dv4e 30217 eupth2lem3lem4 30263 3cyclfrgrrn1 30317 4cycl2vnunb 30322 numclwwlkovh 30405 numclwwlkovq 30406 numclwwlk2lem1 30408 numclwlk2lem2f 30409 superpos 32386 constrconj 33735 signswch 34538 axtgupdim2ALTV 34645 dfrdg4 35915 fvray 36105 linedegen 36107 fvline 36108 linethru 36117 hilbert1.1 36118 knoppndvlem21 36498 poimirlem1 37581 hlsuprexch 39338 3dim1lem5 39423 llni2 39469 lplni2 39494 2llnjN 39524 lvoli2 39538 2lplnj 39577 islinei 39697 cdleme40n 40425 cdlemg33b 40664 ax6e2ndeq 44530 ax6e2ndeqVD 44880 ax6e2ndeqALT 44902 refsum2cnlem1 44937 stoweidlem43 45964 nnfoctbdjlem 46376 elprneb 46944 ichnreuop 47346 usgrgrtrirex 47799 inlinecirc02plem 48520 |
Copyright terms: Public domain | W3C validator |