Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) (Proof shortened by Wolf Lammen, 18-Nov-2019.) |
Ref | Expression |
---|---|
neeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1 | neeq2d 3003 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ne 2943 |
This theorem is referenced by: psseq2 4019 prproe 4834 fprg 7009 f1dom3el3dif 7123 f1prex 7136 dfac5 9815 kmlem4 9840 kmlem14 9850 1re 10906 hashge2el2difr 14123 hashdmpropge2 14125 dvdsle 15947 sgrp2rid2ex 18481 isirred 19856 isnzr2 20447 dmatelnd 21553 mdetdiaglem 21655 mdetunilem1 21669 mdetunilem2 21670 maducoeval2 21697 hausnei 22387 regr1lem2 22799 xrhmeo 24015 axtg5seg 26730 axtgupdim2 26736 axtgeucl 26737 ishlg 26867 tglnpt2 26906 axlowdim1 27230 umgrvad2edg 27483 2pthdlem1 28196 3pthdlem1 28429 upgr3v3e3cycl 28445 upgr4cycl4dv4e 28450 eupth2lem3lem4 28496 3cyclfrgrrn1 28550 4cycl2vnunb 28555 numclwwlkovh 28638 numclwwlkovq 28639 numclwwlk2lem1 28641 numclwlk2lem2f 28642 superpos 30617 signswch 32440 axtgupdim2ALTV 32548 xpord2lem 33716 xpord3lem 33722 dfrdg4 34180 fvray 34370 linedegen 34372 fvline 34373 linethru 34382 hilbert1.1 34383 knoppndvlem21 34639 poimirlem1 35705 hlsuprexch 37322 3dim1lem5 37407 llni2 37453 lplni2 37478 2llnjN 37508 lvoli2 37522 2lplnj 37561 islinei 37681 cdleme40n 38409 cdlemg33b 38648 ax6e2ndeq 42068 ax6e2ndeqVD 42418 ax6e2ndeqALT 42440 refsum2cnlem1 42469 stoweidlem43 43474 nnfoctbdjlem 43883 elprneb 44410 ichnreuop 44812 inlinecirc02plem 46020 |
Copyright terms: Public domain | W3C validator |