Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrabrd Structured version   Visualization version   GIF version

Theorem elrabrd 32447
Description: Deduction version of elrab 3648, just like elrabd 3650, but backwards direction. (Contributed by Thierry Arnoux, 15-Jan-2026.)
Hypotheses
Ref Expression
elrabrd.1 (𝑥 = 𝐴 → (𝜓𝜒))
elrabrd.2 (𝜑𝐴 ∈ {𝑥𝐵𝜓})
Assertion
Ref Expression
elrabrd (𝜑𝜒)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elrabrd
StepHypRef Expression
1 elrabrd.2 . . 3 (𝜑𝐴 ∈ {𝑥𝐵𝜓})
2 elrabrd.1 . . . 4 (𝑥 = 𝐴 → (𝜓𝜒))
32elrab 3648 . . 3 (𝐴 ∈ {𝑥𝐵𝜓} ↔ (𝐴𝐵𝜒))
41, 3sylib 218 . 2 (𝜑 → (𝐴𝐵𝜒))
54simprd 495 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438
This theorem is referenced by:  mplvrpmrhm  33558
  Copyright terms: Public domain W3C validator