| Step | Hyp | Ref
| Expression |
| 1 | | esplyfv.d |
. . . 4
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0} |
| 2 | | esplyfv.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 3 | | esplyfv.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 4 | | esplyfv.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (0...(♯‘𝐼))) |
| 5 | | elfznn0 13511 |
. . . . 5
⊢ (𝐾 ∈
(0...(♯‘𝐼))
→ 𝐾 ∈
ℕ0) |
| 6 | 4, 5 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 7 | 1, 2, 3, 6 | esplyfval 33554 |
. . 3
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))) |
| 8 | 7 | fveq1d 6818 |
. 2
⊢ (𝜑 → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = (((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))‘𝐹)) |
| 9 | | ovex 7373 |
. . . . . 6
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 10 | 1 | ssrab3 4029 |
. . . . . 6
⊢ 𝐷 ⊆ (ℕ0
↑m 𝐼) |
| 11 | 9, 10 | ssexi 5257 |
. . . . 5
⊢ 𝐷 ∈ V |
| 12 | 11 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ V) |
| 13 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑑𝜑 |
| 14 | | indf1o 32800 |
. . . . . . 7
⊢ (𝐼 ∈ Fin →
(𝟭‘𝐼):𝒫 𝐼–1-1-onto→({0,
1} ↑m 𝐼)) |
| 15 | | f1of 6758 |
. . . . . . 7
⊢
((𝟭‘𝐼):𝒫 𝐼–1-1-onto→({0,
1} ↑m 𝐼)
→ (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼)) |
| 16 | 2, 14, 15 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼)) |
| 17 | 16 | ffund 6650 |
. . . . 5
⊢ (𝜑 → Fun (𝟭‘𝐼)) |
| 18 | | breq1 5091 |
. . . . . . 7
⊢ (ℎ = ((𝟭‘𝐼)‘𝑑) → (ℎ finSupp 0 ↔ ((𝟭‘𝐼)‘𝑑) finSupp 0)) |
| 19 | | nn0ex 12378 |
. . . . . . . . 9
⊢
ℕ0 ∈ V |
| 20 | 19 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ℕ0 ∈
V) |
| 21 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝐼 ∈ Fin) |
| 22 | | ssrab2 4027 |
. . . . . . . . . . . . 13
⊢ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼 |
| 23 | 22 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼) |
| 24 | 23 | sselda 3931 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑑 ∈ 𝒫 𝐼) |
| 25 | 24 | elpwid 4556 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑑 ⊆ 𝐼) |
| 26 | | indf 32791 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ Fin ∧ 𝑑 ⊆ 𝐼) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1}) |
| 27 | 21, 25, 26 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1}) |
| 28 | | 0nn0 12387 |
. . . . . . . . . . 11
⊢ 0 ∈
ℕ0 |
| 29 | 28 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 0 ∈
ℕ0) |
| 30 | | 1nn0 12388 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ0 |
| 31 | 30 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 1 ∈
ℕ0) |
| 32 | 29, 31 | prssd 4771 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → {0, 1} ⊆
ℕ0) |
| 33 | 27, 32 | fssd 6663 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑):𝐼⟶ℕ0) |
| 34 | 20, 21, 33 | elmapdd 8759 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) ∈ (ℕ0
↑m 𝐼)) |
| 35 | 27, 21, 29 | fidmfisupp 9250 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) finSupp 0) |
| 36 | 18, 34, 35 | elrabd 3646 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 37 | 36, 1 | eleqtrrdi 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → ((𝟭‘𝐼)‘𝑑) ∈ 𝐷) |
| 38 | 13, 17, 37 | funimassd 6882 |
. . . 4
⊢ (𝜑 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷) |
| 39 | | indf 32791 |
. . . 4
⊢ ((𝐷 ∈ V ∧
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾}) ⊆ 𝐷) → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1}) |
| 40 | 12, 38, 39 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1}) |
| 41 | | esplyfv.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| 42 | 40, 41 | fvco3d 6916 |
. 2
⊢ (𝜑 → (((ℤRHom‘𝑅) ∘
((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))‘𝐹) = ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹))) |
| 43 | | indfval 32792 |
. . . . 5
⊢ ((𝐷 ∈ V ∧
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾}) ⊆ 𝐷 ∧ 𝐹 ∈ 𝐷) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹) = if(𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}), 1, 0)) |
| 44 | 11, 38, 41, 43 | mp3an2i 1468 |
. . . 4
⊢ (𝜑 → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹) = if(𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}), 1, 0)) |
| 45 | 44 | fveq2d 6820 |
. . 3
⊢ (𝜑 → ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹)) = ((ℤRHom‘𝑅)‘if(𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}), 1, 0))) |
| 46 | | fvif 6832 |
. . . 4
⊢
((ℤRHom‘𝑅)‘if(𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}), 1, 0)) = if(𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}), ((ℤRHom‘𝑅)‘1), ((ℤRHom‘𝑅)‘0)) |
| 47 | 46 | a1i 11 |
. . 3
⊢ (𝜑 → ((ℤRHom‘𝑅)‘if(𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}), 1, 0)) = if(𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}), ((ℤRHom‘𝑅)‘1), ((ℤRHom‘𝑅)‘0))) |
| 48 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → ((𝟭‘𝐼)‘𝑑) = 𝐹) |
| 49 | 48 | oveq1d 7355 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → (((𝟭‘𝐼)‘𝑑) supp 0) = (𝐹 supp 0)) |
| 50 | | indsupp 32803 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ Fin ∧ 𝑑 ⊆ 𝐼) → (((𝟭‘𝐼)‘𝑑) supp 0) = 𝑑) |
| 51 | 21, 25, 50 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → (((𝟭‘𝐼)‘𝑑) supp 0) = 𝑑) |
| 52 | 51 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → (((𝟭‘𝐼)‘𝑑) supp 0) = 𝑑) |
| 53 | 49, 52 | eqtr3d 2766 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → (𝐹 supp 0) = 𝑑) |
| 54 | 53 | fveq2d 6820 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → (♯‘(𝐹 supp 0)) = (♯‘𝑑)) |
| 55 | | fveqeq2 6825 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑑 → ((♯‘𝑐) = 𝐾 ↔ (♯‘𝑑) = 𝐾)) |
| 56 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) |
| 57 | 55, 56 | elrabrd 32430 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → (♯‘𝑑) = 𝐾) |
| 58 | 57 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → (♯‘𝑑) = 𝐾) |
| 59 | 54, 58 | eqtrd 2764 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → (♯‘(𝐹 supp 0)) = 𝐾) |
| 60 | 59 | adantllr 719 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝐹) → (♯‘(𝐹 supp 0)) = 𝐾) |
| 61 | 16 | ffnd 6647 |
. . . . . . . 8
⊢ (𝜑 → (𝟭‘𝐼) Fn 𝒫 𝐼) |
| 62 | 61, 23 | fvelimabd 6889 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ↔ ∃𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ((𝟭‘𝐼)‘𝑑) = 𝐹)) |
| 63 | 62 | biimpa 476 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → ∃𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ((𝟭‘𝐼)‘𝑑) = 𝐹) |
| 64 | 60, 63 | r19.29a 3137 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → (♯‘(𝐹 supp 0)) = 𝐾) |
| 65 | | fveqeq2 6825 |
. . . . . . 7
⊢ (𝑑 = (𝐹 supp 0) → (((𝟭‘𝐼)‘𝑑) = 𝐹 ↔ ((𝟭‘𝐼)‘(𝐹 supp 0)) = 𝐹)) |
| 66 | | fveqeq2 6825 |
. . . . . . . 8
⊢ (𝑐 = (𝐹 supp 0) → ((♯‘𝑐) = 𝐾 ↔ (♯‘(𝐹 supp 0)) = 𝐾)) |
| 67 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (♯‘(𝐹 supp 0)) = 𝐾) → 𝐼 ∈ Fin) |
| 68 | | suppssdm 8101 |
. . . . . . . . . . 11
⊢ (𝐹 supp 0) ⊆ dom 𝐹 |
| 69 | 19 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℕ0 ∈
V) |
| 70 | 10, 41 | sselid 3929 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ (ℕ0
↑m 𝐼)) |
| 71 | 2, 69, 70 | elmaprd 32613 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐼⟶ℕ0) |
| 72 | 68, 71 | fssdm 6665 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 supp 0) ⊆ 𝐼) |
| 73 | 72 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (♯‘(𝐹 supp 0)) = 𝐾) → (𝐹 supp 0) ⊆ 𝐼) |
| 74 | 67, 73 | sselpwd 5263 |
. . . . . . . 8
⊢ ((𝜑 ∧ (♯‘(𝐹 supp 0)) = 𝐾) → (𝐹 supp 0) ∈ 𝒫 𝐼) |
| 75 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (♯‘(𝐹 supp 0)) = 𝐾) → (♯‘(𝐹 supp 0)) = 𝐾) |
| 76 | 66, 74, 75 | elrabd 3646 |
. . . . . . 7
⊢ ((𝜑 ∧ (♯‘(𝐹 supp 0)) = 𝐾) → (𝐹 supp 0) ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) |
| 77 | 71 | ffnd 6647 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn 𝐼) |
| 78 | | esplyfv1.1 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝐹 ⊆ {0, 1}) |
| 79 | | df-f 6480 |
. . . . . . . . . . 11
⊢ (𝐹:𝐼⟶{0, 1} ↔ (𝐹 Fn 𝐼 ∧ ran 𝐹 ⊆ {0, 1})) |
| 80 | 77, 78, 79 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐼⟶{0, 1}) |
| 81 | 2, 80 | indfsid 32805 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = ((𝟭‘𝐼)‘(𝐹 supp 0))) |
| 82 | 81 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (♯‘(𝐹 supp 0)) = 𝐾) → 𝐹 = ((𝟭‘𝐼)‘(𝐹 supp 0))) |
| 83 | 82 | eqcomd 2735 |
. . . . . . 7
⊢ ((𝜑 ∧ (♯‘(𝐹 supp 0)) = 𝐾) → ((𝟭‘𝐼)‘(𝐹 supp 0)) = 𝐹) |
| 84 | 65, 76, 83 | rspcedvdw 3577 |
. . . . . 6
⊢ ((𝜑 ∧ (♯‘(𝐹 supp 0)) = 𝐾) → ∃𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ((𝟭‘𝐼)‘𝑑) = 𝐹) |
| 85 | 62 | biimpar 477 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ((𝟭‘𝐼)‘𝑑) = 𝐹) → 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) |
| 86 | 84, 85 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘(𝐹 supp 0)) = 𝐾) → 𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) |
| 87 | 64, 86 | impbida 800 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ↔ (♯‘(𝐹 supp 0)) = 𝐾)) |
| 88 | | eqid 2729 |
. . . . . 6
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
| 89 | | esplyfv.1 |
. . . . . 6
⊢ 1 =
(1r‘𝑅) |
| 90 | 88, 89 | zrh1 21403 |
. . . . 5
⊢ (𝑅 ∈ Ring →
((ℤRHom‘𝑅)‘1) = 1 ) |
| 91 | 3, 90 | syl 17 |
. . . 4
⊢ (𝜑 → ((ℤRHom‘𝑅)‘1) = 1 ) |
| 92 | | esplyfv.0 |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
| 93 | 88, 92 | zrh0 21404 |
. . . . 5
⊢ (𝑅 ∈ Ring →
((ℤRHom‘𝑅)‘0) = 0 ) |
| 94 | 3, 93 | syl 17 |
. . . 4
⊢ (𝜑 → ((ℤRHom‘𝑅)‘0) = 0 ) |
| 95 | 87, 91, 94 | ifbieq12d 4501 |
. . 3
⊢ (𝜑 → if(𝐹 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}), ((ℤRHom‘𝑅)‘1), ((ℤRHom‘𝑅)‘0)) =
if((♯‘(𝐹 supp
0)) = 𝐾, 1 , 0 )) |
| 96 | 45, 47, 95 | 3eqtrd 2768 |
. 2
⊢ (𝜑 → ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝐹)) = if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 )) |
| 97 | 8, 42, 96 | 3eqtrd 2768 |
1
⊢ (𝜑 → (((𝐼eSymPoly𝑅)‘𝐾)‘𝐹) = if((♯‘(𝐹 supp 0)) = 𝐾, 1 , 0 )) |