| Step | Hyp | Ref
| Expression |
| 1 | | esplympl.i |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 2 | 1 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → 𝐼 ∈ Fin) |
| 3 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → ((𝟭‘𝐼)‘𝑏) = 𝑑) |
| 4 | 2 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → 𝐼 ∈ Fin) |
| 5 | | ssrab2 4027 |
. . . . . . . . . . . . . 14
⊢ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼 |
| 6 | 5 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼) |
| 7 | 6 | sselda 3931 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑏 ∈ 𝒫 𝐼) |
| 8 | 7 | elpwid 4556 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑏 ⊆ 𝐼) |
| 9 | 8 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → 𝑏 ⊆ 𝐼) |
| 10 | | indf 32791 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ Fin ∧ 𝑏 ⊆ 𝐼) → ((𝟭‘𝐼)‘𝑏):𝐼⟶{0, 1}) |
| 11 | 4, 9, 10 | syl2anc 584 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → ((𝟭‘𝐼)‘𝑏):𝐼⟶{0, 1}) |
| 12 | 3, 11 | feq1dd 6629 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → 𝑑:𝐼⟶{0, 1}) |
| 13 | | indf1o 32800 |
. . . . . . . . . . . 12
⊢ (𝐼 ∈ Fin →
(𝟭‘𝐼):𝒫 𝐼–1-1-onto→({0,
1} ↑m 𝐼)) |
| 14 | | f1of 6758 |
. . . . . . . . . . . 12
⊢
((𝟭‘𝐼):𝒫 𝐼–1-1-onto→({0,
1} ↑m 𝐼)
→ (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼)) |
| 15 | 1, 13, 14 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼)) |
| 16 | 15 | ffund 6650 |
. . . . . . . . . 10
⊢ (𝜑 → Fun (𝟭‘𝐼)) |
| 17 | 16 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → Fun (𝟭‘𝐼)) |
| 18 | | ovex 7373 |
. . . . . . . . . . . 12
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 19 | | esplympl.d |
. . . . . . . . . . . . 13
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0} |
| 20 | 19 | ssrab3 4029 |
. . . . . . . . . . . 12
⊢ 𝐷 ⊆ (ℕ0
↑m 𝐼) |
| 21 | 18, 20 | ssexi 5257 |
. . . . . . . . . . 11
⊢ 𝐷 ∈ V |
| 22 | 21 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → 𝐷 ∈ V) |
| 23 | | esplympl.r |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 24 | 23 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → 𝑅 ∈ Ring) |
| 25 | | esplympl.k |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 26 | 25 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → 𝐾 ∈
ℕ0) |
| 27 | 19, 2, 24, 26 | esplylem 33555 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷) |
| 28 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → 𝑑 ∈ 𝐷) |
| 29 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) |
| 30 | 29 | neneqd 2930 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → ¬ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) = (0g‘𝑅)) |
| 31 | | indf 32791 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷 ∈ V ∧
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾}) ⊆ 𝐷) → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1}) |
| 32 | 22, 27, 31 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1}) |
| 33 | 32 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1}) |
| 34 | 28 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → 𝑑 ∈ 𝐷) |
| 35 | 33, 34 | ffvelcdmd 7012 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ∈ {0, 1}) |
| 36 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) |
| 37 | | elprn2 4602 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ∈ {0, 1} ∧
(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) = 0) |
| 38 | 35, 36, 37 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) = 0) |
| 39 | 38 | fveq2d 6820 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑)) = ((ℤRHom‘𝑅)‘0)) |
| 40 | | eqid 2729 |
. . . . . . . . . . . . . . . . 17
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
| 41 | | eqid 2729 |
. . . . . . . . . . . . . . . . 17
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 42 | 40, 41 | zrh0 21404 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ Ring →
((ℤRHom‘𝑅)‘0) = (0g‘𝑅)) |
| 43 | 23, 42 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((ℤRHom‘𝑅)‘0) =
(0g‘𝑅)) |
| 44 | 43 | ad3antrrr 730 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → ((ℤRHom‘𝑅)‘0) =
(0g‘𝑅)) |
| 45 | 39, 44 | eqtrd 2764 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑)) = (0g‘𝑅)) |
| 46 | 19, 1, 23, 25 | esplyfval 33554 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))) |
| 47 | 46 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → ((𝐼eSymPoly𝑅)‘𝐾) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))) |
| 48 | 47 | fveq1d 6818 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) = (((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))‘𝑑)) |
| 49 | 32, 28 | fvco3d 6916 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → (((ℤRHom‘𝑅) ∘
((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))‘𝑑) = ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑))) |
| 50 | 48, 49 | eqtrd 2764 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) = ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑))) |
| 51 | 50, 29 | eqnetrrd 2993 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑)) ≠ (0g‘𝑅)) |
| 52 | 51 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑)) ≠ (0g‘𝑅)) |
| 53 | 45, 52 | pm2.21ddne 3009 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) = (0g‘𝑅)) |
| 54 | 30, 53 | mtand 815 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → ¬ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) |
| 55 | | nne 2929 |
. . . . . . . . . . 11
⊢ (¬
(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1 ↔ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) = 1) |
| 56 | 54, 55 | sylib 218 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) = 1) |
| 57 | | ind1a 32795 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ V ∧
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾}) ⊆ 𝐷 ∧ 𝑑 ∈ 𝐷) → ((((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) = 1 ↔ 𝑑 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) |
| 58 | 57 | biimpa 476 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ V ∧
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾}) ⊆ 𝐷 ∧ 𝑑 ∈ 𝐷) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) = 1) → 𝑑 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) |
| 59 | 22, 27, 28, 56, 58 | syl31anc 1375 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → 𝑑 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) |
| 60 | | fvelima 6881 |
. . . . . . . . 9
⊢ ((Fun
(𝟭‘𝐼) ∧
𝑑 ∈
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾})) → ∃𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ((𝟭‘𝐼)‘𝑏) = 𝑑) |
| 61 | 17, 59, 60 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → ∃𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ((𝟭‘𝐼)‘𝑏) = 𝑑) |
| 62 | 12, 61 | r19.29a 3137 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → 𝑑:𝐼⟶{0, 1}) |
| 63 | 2, 62 | indfsid 32805 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → 𝑑 = ((𝟭‘𝐼)‘(𝑑 supp 0))) |
| 64 | 63 | oveq2d 7356 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → (ℂfld
Σg 𝑑) = (ℂfld
Σg ((𝟭‘𝐼)‘(𝑑 supp 0)))) |
| 65 | | nn0subm 21313 |
. . . . . . 7
⊢
ℕ0 ∈
(SubMnd‘ℂfld) |
| 66 | 65 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → ℕ0 ∈
(SubMnd‘ℂfld)) |
| 67 | 20 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ⊆ (ℕ0
↑m 𝐼)) |
| 68 | 67 | sselda 3931 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝑑 ∈ (ℕ0
↑m 𝐼)) |
| 69 | 68 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → 𝑑 ∈ (ℕ0
↑m 𝐼)) |
| 70 | 2, 66, 69 | elmaprd 32613 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → 𝑑:𝐼⟶ℕ0) |
| 71 | | eqid 2729 |
. . . . . 6
⊢
(ℂfld ↾s ℕ0) =
(ℂfld ↾s
ℕ0) |
| 72 | 2, 66, 70, 71 | gsumsubm 18696 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → (ℂfld
Σg 𝑑) = ((ℂfld
↾s ℕ0) Σg 𝑑)) |
| 73 | | suppssdm 8101 |
. . . . . . . 8
⊢ (𝑑 supp 0) ⊆ dom 𝑑 |
| 74 | 1 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝐼 ∈ Fin) |
| 75 | | nn0ex 12378 |
. . . . . . . . . . . 12
⊢
ℕ0 ∈ V |
| 76 | 75 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → ℕ0 ∈
V) |
| 77 | 74, 76, 68 | elmaprd 32613 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝑑:𝐼⟶ℕ0) |
| 78 | 77 | fdmd 6656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → dom 𝑑 = 𝐼) |
| 79 | 78 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → dom 𝑑 = 𝐼) |
| 80 | 73, 79 | sseqtrid 3974 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → (𝑑 supp 0) ⊆ 𝐼) |
| 81 | 2, 80 | ssfid 9147 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → (𝑑 supp 0) ∈ Fin) |
| 82 | 2, 80, 81 | gsumind 33278 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → (ℂfld
Σg ((𝟭‘𝐼)‘(𝑑 supp 0))) = (♯‘(𝑑 supp 0))) |
| 83 | 3 | oveq1d 7355 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → (((𝟭‘𝐼)‘𝑏) supp 0) = (𝑑 supp 0)) |
| 84 | | indsupp 32803 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ Fin ∧ 𝑏 ⊆ 𝐼) → (((𝟭‘𝐼)‘𝑏) supp 0) = 𝑏) |
| 85 | 4, 9, 84 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → (((𝟭‘𝐼)‘𝑏) supp 0) = 𝑏) |
| 86 | 83, 85 | eqtr3d 2766 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → (𝑑 supp 0) = 𝑏) |
| 87 | 86 | fveq2d 6820 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → (♯‘(𝑑 supp 0)) = (♯‘𝑏)) |
| 88 | | fveqeq2 6825 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → ((♯‘𝑐) = 𝐾 ↔ (♯‘𝑏) = 𝐾)) |
| 89 | | simplr 768 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) |
| 90 | 88, 89 | elrabrd 32430 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → (♯‘𝑏) = 𝐾) |
| 91 | 87, 90 | eqtrd 2764 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → (♯‘(𝑑 supp 0)) = 𝐾) |
| 92 | 91, 61 | r19.29a 3137 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → (♯‘(𝑑 supp 0)) = 𝐾) |
| 93 | 82, 92 | eqtrd 2764 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → (ℂfld
Σg ((𝟭‘𝐼)‘(𝑑 supp 0))) = 𝐾) |
| 94 | 64, 72, 93 | 3eqtr3d 2772 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅)) → ((ℂfld
↾s ℕ0) Σg 𝑑) = 𝐾) |
| 95 | 94 | ex 412 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → ((((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld
↾s ℕ0) Σg 𝑑) = 𝐾)) |
| 96 | 95 | ralrimiva 3121 |
. 2
⊢ (𝜑 → ∀𝑑 ∈ 𝐷 ((((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld
↾s ℕ0) Σg 𝑑) = 𝐾)) |
| 97 | | esplymhp.1 |
. . 3
⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| 98 | | eqid 2729 |
. . 3
⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) |
| 99 | | eqid 2729 |
. . 3
⊢
(Base‘(𝐼 mPoly
𝑅)) = (Base‘(𝐼 mPoly 𝑅)) |
| 100 | 19 | psrbasfsupp 33540 |
. . 3
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 101 | 19, 1, 23, 25, 99 | esplympl 33556 |
. . 3
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) ∈ (Base‘(𝐼 mPoly 𝑅))) |
| 102 | 97, 98, 99, 41, 100, 25, 101 | ismhp3 22011 |
. 2
⊢ (𝜑 → (((𝐼eSymPoly𝑅)‘𝐾) ∈ (𝐻‘𝐾) ↔ ∀𝑑 ∈ 𝐷 ((((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g‘𝑅) → ((ℂfld
↾s ℕ0) Σg 𝑑) = 𝐾))) |
| 103 | 96, 102 | mpbird 257 |
1
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) ∈ (𝐻‘𝐾)) |