Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esplymhp Structured version   Visualization version   GIF version

Theorem esplymhp 33596
Description: The 𝐾-th elementary symmetric polynomial is homogeneous of degree 𝐾. (Contributed by Thierry Arnoux, 18-Jan-2026.)
Hypotheses
Ref Expression
esplympl.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
esplympl.i (𝜑𝐼 ∈ Fin)
esplympl.r (𝜑𝑅 ∈ Ring)
esplympl.k (𝜑𝐾 ∈ ℕ0)
esplymhp.1 𝐻 = (𝐼 mHomP 𝑅)
Assertion
Ref Expression
esplymhp (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) ∈ (𝐻𝐾))
Distinct variable group:   ,𝐼
Allowed substitution hints:   𝜑()   𝐷()   𝑅()   𝐻()   𝐾()

Proof of Theorem esplymhp
Dummy variables 𝑑 𝑐 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esplympl.i . . . . . . . 8 (𝜑𝐼 ∈ Fin)
21ad2antrr 726 . . . . . . 7 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → 𝐼 ∈ Fin)
3 simpr 484 . . . . . . . . 9 (((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → ((𝟭‘𝐼)‘𝑏) = 𝑑)
42ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → 𝐼 ∈ Fin)
5 ssrab2 4029 . . . . . . . . . . . . . 14 {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼
65a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼)
76sselda 3929 . . . . . . . . . . . 12 ((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑏 ∈ 𝒫 𝐼)
87elpwid 4558 . . . . . . . . . . 11 ((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑏𝐼)
98adantr 480 . . . . . . . . . 10 (((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → 𝑏𝐼)
10 indf 32843 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑏𝐼) → ((𝟭‘𝐼)‘𝑏):𝐼⟶{0, 1})
114, 9, 10syl2anc 584 . . . . . . . . 9 (((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → ((𝟭‘𝐼)‘𝑏):𝐼⟶{0, 1})
123, 11feq1dd 6640 . . . . . . . 8 (((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → 𝑑:𝐼⟶{0, 1})
13 indf1o 32852 . . . . . . . . . . . 12 (𝐼 ∈ Fin → (𝟭‘𝐼):𝒫 𝐼1-1-onto→({0, 1} ↑m 𝐼))
14 f1of 6769 . . . . . . . . . . . 12 ((𝟭‘𝐼):𝒫 𝐼1-1-onto→({0, 1} ↑m 𝐼) → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼))
151, 13, 143syl 18 . . . . . . . . . . 11 (𝜑 → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼))
1615ffund 6661 . . . . . . . . . 10 (𝜑 → Fun (𝟭‘𝐼))
1716ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → Fun (𝟭‘𝐼))
18 ovex 7385 . . . . . . . . . . . 12 (ℕ0m 𝐼) ∈ V
19 esplympl.d . . . . . . . . . . . . 13 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
2019ssrab3 4031 . . . . . . . . . . . 12 𝐷 ⊆ (ℕ0m 𝐼)
2118, 20ssexi 5262 . . . . . . . . . . 11 𝐷 ∈ V
2221a1i 11 . . . . . . . . . 10 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → 𝐷 ∈ V)
23 esplympl.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
2423ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → 𝑅 ∈ Ring)
25 esplympl.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℕ0)
2625ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → 𝐾 ∈ ℕ0)
2719, 2, 24, 26esplylem 33594 . . . . . . . . . 10 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷)
28 simplr 768 . . . . . . . . . 10 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → 𝑑𝐷)
29 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅))
3029neneqd 2933 . . . . . . . . . . . 12 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → ¬ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) = (0g𝑅))
31 indf 32843 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ V ∧ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷) → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1})
3222, 27, 31syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1})
3332adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1})
3428adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → 𝑑𝐷)
3533, 34ffvelcdmd 7024 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ∈ {0, 1})
36 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1)
37 elprn2 4604 . . . . . . . . . . . . . . . 16 (((((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ∈ {0, 1} ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) = 0)
3835, 36, 37syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) = 0)
3938fveq2d 6832 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑)) = ((ℤRHom‘𝑅)‘0))
40 eqid 2731 . . . . . . . . . . . . . . . . 17 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
41 eqid 2731 . . . . . . . . . . . . . . . . 17 (0g𝑅) = (0g𝑅)
4240, 41zrh0 21456 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → ((ℤRHom‘𝑅)‘0) = (0g𝑅))
4323, 42syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((ℤRHom‘𝑅)‘0) = (0g𝑅))
4443ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → ((ℤRHom‘𝑅)‘0) = (0g𝑅))
4539, 44eqtrd 2766 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑)) = (0g𝑅))
4619, 1, 23, 25esplyfval 33593 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))))
4746ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → ((𝐼eSymPoly𝑅)‘𝐾) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))))
4847fveq1d 6830 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) = (((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))‘𝑑))
4932, 28fvco3d 6928 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → (((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))‘𝑑) = ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑)))
5048, 49eqtrd 2766 . . . . . . . . . . . . . . 15 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) = ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑)))
5150, 29eqnetrrd 2996 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑)) ≠ (0g𝑅))
5251adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑)) ≠ (0g𝑅))
5345, 52pm2.21ddne 3012 . . . . . . . . . . . 12 ((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) = (0g𝑅))
5430, 53mtand 815 . . . . . . . . . . 11 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → ¬ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1)
55 nne 2932 . . . . . . . . . . 11 (¬ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) ≠ 1 ↔ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) = 1)
5654, 55sylib 218 . . . . . . . . . 10 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) = 1)
57 ind1a 32847 . . . . . . . . . . 11 ((𝐷 ∈ V ∧ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷𝑑𝐷) → ((((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) = 1 ↔ 𝑑 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))
5857biimpa 476 . . . . . . . . . 10 (((𝐷 ∈ V ∧ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷𝑑𝐷) ∧ (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑑) = 1) → 𝑑 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))
5922, 27, 28, 56, 58syl31anc 1375 . . . . . . . . 9 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → 𝑑 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))
60 fvelima 6893 . . . . . . . . 9 ((Fun (𝟭‘𝐼) ∧ 𝑑 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → ∃𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ((𝟭‘𝐼)‘𝑏) = 𝑑)
6117, 59, 60syl2anc 584 . . . . . . . 8 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → ∃𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ((𝟭‘𝐼)‘𝑏) = 𝑑)
6212, 61r19.29a 3140 . . . . . . 7 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → 𝑑:𝐼⟶{0, 1})
632, 62indfsid 32857 . . . . . 6 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → 𝑑 = ((𝟭‘𝐼)‘(𝑑 supp 0)))
6463oveq2d 7368 . . . . 5 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → (ℂfld Σg 𝑑) = (ℂfld Σg ((𝟭‘𝐼)‘(𝑑 supp 0))))
65 nn0subm 21365 . . . . . . 7 0 ∈ (SubMnd‘ℂfld)
6665a1i 11 . . . . . 6 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → ℕ0 ∈ (SubMnd‘ℂfld))
6720a1i 11 . . . . . . . . 9 (𝜑𝐷 ⊆ (ℕ0m 𝐼))
6867sselda 3929 . . . . . . . 8 ((𝜑𝑑𝐷) → 𝑑 ∈ (ℕ0m 𝐼))
6968adantr 480 . . . . . . 7 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → 𝑑 ∈ (ℕ0m 𝐼))
702, 66, 69elmaprd 32668 . . . . . 6 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → 𝑑:𝐼⟶ℕ0)
71 eqid 2731 . . . . . 6 (ℂflds0) = (ℂflds0)
722, 66, 70, 71gsumsubm 18749 . . . . 5 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → (ℂfld Σg 𝑑) = ((ℂflds0) Σg 𝑑))
73 suppssdm 8113 . . . . . . . 8 (𝑑 supp 0) ⊆ dom 𝑑
741adantr 480 . . . . . . . . . . 11 ((𝜑𝑑𝐷) → 𝐼 ∈ Fin)
75 nn0ex 12393 . . . . . . . . . . . 12 0 ∈ V
7675a1i 11 . . . . . . . . . . 11 ((𝜑𝑑𝐷) → ℕ0 ∈ V)
7774, 76, 68elmaprd 32668 . . . . . . . . . 10 ((𝜑𝑑𝐷) → 𝑑:𝐼⟶ℕ0)
7877fdmd 6667 . . . . . . . . 9 ((𝜑𝑑𝐷) → dom 𝑑 = 𝐼)
7978adantr 480 . . . . . . . 8 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → dom 𝑑 = 𝐼)
8073, 79sseqtrid 3972 . . . . . . 7 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → (𝑑 supp 0) ⊆ 𝐼)
812, 80ssfid 9159 . . . . . . 7 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → (𝑑 supp 0) ∈ Fin)
822, 80, 81gsumind 33317 . . . . . 6 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → (ℂfld Σg ((𝟭‘𝐼)‘(𝑑 supp 0))) = (♯‘(𝑑 supp 0)))
833oveq1d 7367 . . . . . . . . . 10 (((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → (((𝟭‘𝐼)‘𝑏) supp 0) = (𝑑 supp 0))
84 indsupp 32855 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ 𝑏𝐼) → (((𝟭‘𝐼)‘𝑏) supp 0) = 𝑏)
854, 9, 84syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → (((𝟭‘𝐼)‘𝑏) supp 0) = 𝑏)
8683, 85eqtr3d 2768 . . . . . . . . 9 (((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → (𝑑 supp 0) = 𝑏)
8786fveq2d 6832 . . . . . . . 8 (((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → (♯‘(𝑑 supp 0)) = (♯‘𝑏))
88 fveqeq2 6837 . . . . . . . . 9 (𝑐 = 𝑏 → ((♯‘𝑐) = 𝐾 ↔ (♯‘𝑏) = 𝐾))
89 simplr 768 . . . . . . . . 9 (((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})
9088, 89elrabrd 32485 . . . . . . . 8 (((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → (♯‘𝑏) = 𝐾)
9187, 90eqtrd 2766 . . . . . . 7 (((((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) ∧ 𝑏 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑏) = 𝑑) → (♯‘(𝑑 supp 0)) = 𝐾)
9291, 61r19.29a 3140 . . . . . 6 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → (♯‘(𝑑 supp 0)) = 𝐾)
9382, 92eqtrd 2766 . . . . 5 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → (ℂfld Σg ((𝟭‘𝐼)‘(𝑑 supp 0))) = 𝐾)
9464, 72, 933eqtr3d 2774 . . . 4 (((𝜑𝑑𝐷) ∧ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅)) → ((ℂflds0) Σg 𝑑) = 𝐾)
9594ex 412 . . 3 ((𝜑𝑑𝐷) → ((((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 𝐾))
9695ralrimiva 3124 . 2 (𝜑 → ∀𝑑𝐷 ((((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 𝐾))
97 esplymhp.1 . . 3 𝐻 = (𝐼 mHomP 𝑅)
98 eqid 2731 . . 3 (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅)
99 eqid 2731 . . 3 (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅))
10019psrbasfsupp 33579 . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
10119, 1, 23, 25, 99esplympl 33595 . . 3 (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) ∈ (Base‘(𝐼 mPoly 𝑅)))
10297, 98, 99, 41, 100, 25, 101ismhp3 22063 . 2 (𝜑 → (((𝐼eSymPoly𝑅)‘𝐾) ∈ (𝐻𝐾) ↔ ∀𝑑𝐷 ((((𝐼eSymPoly𝑅)‘𝐾)‘𝑑) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑑) = 𝐾)))
10396, 102mpbird 257 1 (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) ∈ (𝐻𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  𝒫 cpw 4549  {cpr 4577   class class class wbr 5093  dom cdm 5619  cima 5622  ccom 5623  Fun wfun 6481  wf 6483  1-1-ontowf1o 6486  cfv 6487  (class class class)co 7352   supp csupp 8096  m cmap 8756  Fincfn 8875   finSupp cfsupp 9251  0cc0 11012  1c1 11013  0cn0 12387  chash 14243  Basecbs 17126  s cress 17147  0gc0g 17349   Σg cgsu 17350  SubMndcsubmnd 18696  Ringcrg 20157  fldccnfld 21297  ℤRHomczrh 21442   mPoly cmpl 21849   mHomP cmhp 22050  𝟭cind 32838  eSymPolycesply 33586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-addf 11091  ax-mulf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-oi 9402  df-dju 9800  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-rp 12897  df-fz 13414  df-fzo 13561  df-seq 13915  df-fac 14187  df-bc 14216  df-hash 14244  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-sca 17183  df-vsca 17184  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-0g 17351  df-gsum 17352  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-mhm 18697  df-submnd 18698  df-grp 18855  df-minusg 18856  df-mulg 18987  df-subg 19042  df-ghm 19131  df-cntz 19235  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-cring 20160  df-oppr 20261  df-dvdsr 20281  df-unit 20282  df-invr 20312  df-dvr 20325  df-rhm 20396  df-subrng 20467  df-subrg 20491  df-drng 20652  df-field 20653  df-cnfld 21298  df-zring 21390  df-zrh 21446  df-psr 21852  df-mpl 21854  df-mhp 22057  df-ind 32839  df-esply 33588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator