| Step | Hyp | Ref
| Expression |
| 1 | | mplvrpmga.3 |
. . 3
⊢ 𝑀 = (Base‘(𝐼 mPoly 𝑅)) |
| 2 | | mplvrpmmhm.w |
. . . 4
⊢ 𝑊 = (𝐼 mPoly 𝑅) |
| 3 | 2 | fveq2i 6825 |
. . 3
⊢
(Base‘𝑊) =
(Base‘(𝐼 mPoly 𝑅)) |
| 4 | 1, 3 | eqtr4i 2755 |
. 2
⊢ 𝑀 = (Base‘𝑊) |
| 5 | | eqid 2729 |
. 2
⊢
(1r‘𝑊) = (1r‘𝑊) |
| 6 | | eqid 2729 |
. 2
⊢
(.r‘𝑊) = (.r‘𝑊) |
| 7 | | mplvrpmga.5 |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 8 | | mplvrpmmhm.1 |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 9 | 2, 7, 8 | mplringd 21930 |
. 2
⊢ (𝜑 → 𝑊 ∈ Ring) |
| 10 | | mplvrpmmhm.f |
. . 3
⊢ 𝐹 = (𝑓 ∈ 𝑀 ↦ (𝐷𝐴𝑓)) |
| 11 | | oveq2 7357 |
. . . 4
⊢ (𝑓 = (1r‘𝑊) → (𝐷𝐴𝑓) = (𝐷𝐴(1r‘𝑊))) |
| 12 | | mplvrpmga.4 |
. . . . . . 7
⊢ 𝐴 = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))) |
| 13 | 12 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐴 = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))))) |
| 14 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = (1r‘𝑊)) → 𝑓 = (1r‘𝑊)) |
| 15 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = (1r‘𝑊)) → 𝑑 = 𝐷) |
| 16 | 15 | coeq2d 5805 |
. . . . . . . . . 10
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = (1r‘𝑊)) → (𝑥 ∘ 𝑑) = (𝑥 ∘ 𝐷)) |
| 17 | 14, 16 | fveq12d 6829 |
. . . . . . . . 9
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = (1r‘𝑊)) → (𝑓‘(𝑥 ∘ 𝑑)) = ((1r‘𝑊)‘(𝑥 ∘ 𝐷))) |
| 18 | 17 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑑 = 𝐷 ∧ 𝑓 = (1r‘𝑊))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑓‘(𝑥 ∘ 𝑑)) = ((1r‘𝑊)‘(𝑥 ∘ 𝐷))) |
| 19 | | eqid 2729 |
. . . . . . . . . . . . 13
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} =
{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} |
| 20 | 19 | psrbasfsupp 33553 |
. . . . . . . . . . . 12
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} =
{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| 21 | | eqid 2729 |
. . . . . . . . . . . 12
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 22 | | eqid 2729 |
. . . . . . . . . . . 12
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 23 | 2, 20, 21, 22, 5, 7, 8 | mpl1 21919 |
. . . . . . . . . . 11
⊢ (𝜑 → (1r‘𝑊) = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
if(𝑦 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
| 24 | 23 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(1r‘𝑊) =
(𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
if(𝑦 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
| 25 | | eqeq1 2733 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 ∘ 𝐷) → (𝑦 = (𝐼 × {0}) ↔ (𝑥 ∘ 𝐷) = (𝐼 × {0}))) |
| 26 | | mplvrpmmhm.2 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| 27 | 26 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝐷 ∈ 𝑃) |
| 28 | | mplvrpmga.1 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑆 = (SymGrp‘𝐼) |
| 29 | | mplvrpmga.2 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑃 = (Base‘𝑆) |
| 30 | 28, 29 | symgbasf1o 19254 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐷 ∈ 𝑃 → 𝐷:𝐼–1-1-onto→𝐼) |
| 31 | | f1ococnv2 6791 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐷:𝐼–1-1-onto→𝐼 → (𝐷 ∘ ◡𝐷) = ( I ↾ 𝐼)) |
| 32 | 27, 30, 31 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝐷 ∘ ◡𝐷) = ( I ↾ 𝐼)) |
| 33 | 32 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
(𝑥 ∘ 𝐷) = (𝐼 × {0})) → (𝐷 ∘ ◡𝐷) = ( I ↾ 𝐼)) |
| 34 | 33 | coeq2d 5805 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
(𝑥 ∘ 𝐷) = (𝐼 × {0})) → (𝑥 ∘ (𝐷 ∘ ◡𝐷)) = (𝑥 ∘ ( I ↾ 𝐼))) |
| 35 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
(𝑥 ∘ 𝐷) = (𝐼 × {0})) → (𝑥 ∘ 𝐷) = (𝐼 × {0})) |
| 36 | 35 | coeq1d 5804 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
(𝑥 ∘ 𝐷) = (𝐼 × {0})) → ((𝑥 ∘ 𝐷) ∘ ◡𝐷) = ((𝐼 × {0}) ∘ ◡𝐷)) |
| 37 | | coass 6214 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∘ 𝐷) ∘ ◡𝐷) = (𝑥 ∘ (𝐷 ∘ ◡𝐷)) |
| 38 | 37 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
(𝑥 ∘ 𝐷) = (𝐼 × {0})) → ((𝑥 ∘ 𝐷) ∘ ◡𝐷) = (𝑥 ∘ (𝐷 ∘ ◡𝐷))) |
| 39 | 26, 30 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐷:𝐼–1-1-onto→𝐼) |
| 40 | | f1ocnv 6776 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐷:𝐼–1-1-onto→𝐼 → ◡𝐷:𝐼–1-1-onto→𝐼) |
| 41 | | f1of 6764 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝐷:𝐼–1-1-onto→𝐼 → ◡𝐷:𝐼⟶𝐼) |
| 42 | 39, 40, 41 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ◡𝐷:𝐼⟶𝐼) |
| 43 | | 0nn0 12399 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℕ0 |
| 44 | 43 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 ∈
ℕ0) |
| 45 | 42, 44 | constcof 32573 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐼 × {0}) ∘ ◡𝐷) = (𝐼 × {0})) |
| 46 | 45 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
(𝑥 ∘ 𝐷) = (𝐼 × {0})) → ((𝐼 × {0}) ∘ ◡𝐷) = (𝐼 × {0})) |
| 47 | 36, 38, 46 | 3eqtr3d 2772 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
(𝑥 ∘ 𝐷) = (𝐼 × {0})) → (𝑥 ∘ (𝐷 ∘ ◡𝐷)) = (𝐼 × {0})) |
| 48 | 7 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝐼 ∈ 𝑉) |
| 49 | | nn0ex 12390 |
. . . . . . . . . . . . . . . . . 18
⊢
ℕ0 ∈ V |
| 50 | 49 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
ℕ0 ∈ V) |
| 51 | | ssrab2 4031 |
. . . . . . . . . . . . . . . . . 18
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ⊆
(ℕ0 ↑m 𝐼) |
| 52 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 53 | 51, 52 | sselid 3933 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥 ∈
(ℕ0 ↑m 𝐼)) |
| 54 | 48, 50, 53 | elmaprd 32630 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥:𝐼⟶ℕ0) |
| 55 | | fcoi1 6698 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥:𝐼⟶ℕ0 → (𝑥 ∘ ( I ↾ 𝐼)) = 𝑥) |
| 56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ ( I ↾
𝐼)) = 𝑥) |
| 57 | 56 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
(𝑥 ∘ 𝐷) = (𝐼 × {0})) → (𝑥 ∘ ( I ↾ 𝐼)) = 𝑥) |
| 58 | 34, 47, 57 | 3eqtr3rd 2773 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
(𝑥 ∘ 𝐷) = (𝐼 × {0})) → 𝑥 = (𝐼 × {0})) |
| 59 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑥 = (𝐼 × {0})) → 𝑥 = (𝐼 × {0})) |
| 60 | 59 | coeq1d 5804 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑥 = (𝐼 × {0})) → (𝑥 ∘ 𝐷) = ((𝐼 × {0}) ∘ 𝐷)) |
| 61 | | f1of 6764 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐷:𝐼–1-1-onto→𝐼 → 𝐷:𝐼⟶𝐼) |
| 62 | 26, 30, 61 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐷:𝐼⟶𝐼) |
| 63 | 62, 44 | constcof 32573 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐼 × {0}) ∘ 𝐷) = (𝐼 × {0})) |
| 64 | 63 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑥 = (𝐼 × {0})) → ((𝐼 × {0}) ∘ 𝐷) = (𝐼 × {0})) |
| 65 | 60, 64 | eqtrd 2764 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑥 = (𝐼 × {0})) → (𝑥 ∘ 𝐷) = (𝐼 × {0})) |
| 66 | 58, 65 | impbida 800 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
((𝑥 ∘ 𝐷) = (𝐼 × {0}) ↔ 𝑥 = (𝐼 × {0}))) |
| 67 | 25, 66 | sylan9bbr 510 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 = (𝑥 ∘ 𝐷)) → (𝑦 = (𝐼 × {0}) ↔ 𝑥 = (𝐼 × {0}))) |
| 68 | 67 | ifbid 4500 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 = (𝑥 ∘ 𝐷)) → if(𝑦 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) = if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) |
| 69 | 28, 29, 48, 27, 52 | mplvrpmlem 33554 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝐷) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 70 | | fvexd 6837 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(1r‘𝑅)
∈ V) |
| 71 | | fvexd 6837 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(0g‘𝑅)
∈ V) |
| 72 | 70, 71 | ifcld 4523 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) ∈ V) |
| 73 | 24, 68, 69, 72 | fvmptd 6937 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
((1r‘𝑊)‘(𝑥 ∘ 𝐷)) = if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) |
| 74 | 73 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑑 = 𝐷 ∧ 𝑓 = (1r‘𝑊))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
((1r‘𝑊)‘(𝑥 ∘ 𝐷)) = if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) |
| 75 | 18, 74 | eqtrd 2764 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑑 = 𝐷 ∧ 𝑓 = (1r‘𝑊))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑓‘(𝑥 ∘ 𝑑)) = if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) |
| 76 | 75 | mpteq2dva 5185 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑑 = 𝐷 ∧ 𝑓 = (1r‘𝑊))) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
| 77 | 4, 5, 9 | ringidcld 20151 |
. . . . . 6
⊢ (𝜑 → (1r‘𝑊) ∈ 𝑀) |
| 78 | | ovex 7382 |
. . . . . . . . 9
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 79 | 78 | rabex 5278 |
. . . . . . . 8
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∈
V |
| 80 | 79 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∈
V) |
| 81 | 80 | mptexd 7160 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ V) |
| 82 | 13, 76, 26, 77, 81 | ovmpod 7501 |
. . . . 5
⊢ (𝜑 → (𝐷𝐴(1r‘𝑊)) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
| 83 | | eqid 2729 |
. . . . . 6
⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) |
| 84 | | eqid 2729 |
. . . . . 6
⊢
(1r‘(𝐼 mPwSer 𝑅)) = (1r‘(𝐼 mPwSer 𝑅)) |
| 85 | 83, 7, 8, 20, 21, 22, 84 | psr1 21878 |
. . . . 5
⊢ (𝜑 →
(1r‘(𝐼
mPwSer 𝑅)) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
if(𝑥 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
| 86 | 83, 2, 4, 7, 8 | mplsubrg 21912 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (SubRing‘(𝐼 mPwSer 𝑅))) |
| 87 | 2, 83, 4 | mplval2 21903 |
. . . . . . 7
⊢ 𝑊 = ((𝐼 mPwSer 𝑅) ↾s 𝑀) |
| 88 | 87, 84 | subrg1 20467 |
. . . . . 6
⊢ (𝑀 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → (1r‘(𝐼 mPwSer 𝑅)) = (1r‘𝑊)) |
| 89 | 86, 88 | syl 17 |
. . . . 5
⊢ (𝜑 →
(1r‘(𝐼
mPwSer 𝑅)) =
(1r‘𝑊)) |
| 90 | 82, 85, 89 | 3eqtr2d 2770 |
. . . 4
⊢ (𝜑 → (𝐷𝐴(1r‘𝑊)) = (1r‘𝑊)) |
| 91 | 11, 90 | sylan9eqr 2786 |
. . 3
⊢ ((𝜑 ∧ 𝑓 = (1r‘𝑊)) → (𝐷𝐴𝑓) = (1r‘𝑊)) |
| 92 | 10, 91, 77, 77 | fvmptd2 6938 |
. 2
⊢ (𝜑 → (𝐹‘(1r‘𝑊)) = (1r‘𝑊)) |
| 93 | | nfcv 2891 |
. . . . . . 7
⊢
Ⅎ𝑣((𝑖‘(𝑦 ∘ 𝐷))(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − (𝑦 ∘ 𝐷)))) |
| 94 | | eqid 2729 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 95 | | fveq2 6822 |
. . . . . . . 8
⊢ (𝑣 = (𝑦 ∘ 𝐷) → (𝑖‘𝑣) = (𝑖‘(𝑦 ∘ 𝐷))) |
| 96 | | oveq2 7357 |
. . . . . . . . 9
⊢ (𝑣 = (𝑦 ∘ 𝐷) → ((𝑥 ∘ 𝐷) ∘f − 𝑣) = ((𝑥 ∘ 𝐷) ∘f − (𝑦 ∘ 𝐷))) |
| 97 | 96 | fveq2d 6826 |
. . . . . . . 8
⊢ (𝑣 = (𝑦 ∘ 𝐷) → (𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣)) = (𝑗‘((𝑥 ∘ 𝐷) ∘f − (𝑦 ∘ 𝐷)))) |
| 98 | 95, 97 | oveq12d 7367 |
. . . . . . 7
⊢ (𝑣 = (𝑦 ∘ 𝐷) → ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣))) = ((𝑖‘(𝑦 ∘ 𝐷))(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − (𝑦 ∘ 𝐷))))) |
| 99 | 8 | ringcmnd 20169 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 100 | 99 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑅 ∈
CMnd) |
| 101 | 79 | rabex 5278 |
. . . . . . . 8
⊢ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ∈ V |
| 102 | 101 | a1i 11 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
{𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ∈ V) |
| 103 | | eqid 2729 |
. . . . . . . . . . . 12
⊢
(Base‘(𝐼
mPwSer 𝑅)) =
(Base‘(𝐼 mPwSer 𝑅)) |
| 104 | 2, 83, 4, 103 | mplbasss 21904 |
. . . . . . . . . . . . . 14
⊢ 𝑀 ⊆ (Base‘(𝐼 mPwSer 𝑅)) |
| 105 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝑖 ∈ 𝑀) |
| 106 | 104, 105 | sselid 3933 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝑖 ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 107 | 106 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑖 ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 108 | 83, 94, 20, 103, 107 | psrelbas 21841 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑖:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}⟶(Base‘𝑅)) |
| 109 | 108 | feqmptd 6891 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑖 = (𝑣 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑖‘𝑣))) |
| 110 | 105 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑖 ∈ 𝑀) |
| 111 | 2, 4, 21, 110 | mplelsfi 21902 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑖 finSupp
(0g‘𝑅)) |
| 112 | 109, 111 | eqbrtrrd 5116 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑣 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑖‘𝑣)) finSupp (0g‘𝑅)) |
| 113 | | ssrab2 4031 |
. . . . . . . . . 10
⊢ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ⊆ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0} |
| 114 | 113 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
{𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ⊆ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 115 | | fvexd 6837 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(0g‘𝑅)
∈ V) |
| 116 | 112, 114,
115 | fmptssfisupp 9284 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ↦ (𝑖‘𝑣)) finSupp (0g‘𝑅)) |
| 117 | | eqid 2729 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 118 | 8 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑛 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) |
| 119 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑛 ∈ (Base‘𝑅)) → 𝑛 ∈ (Base‘𝑅)) |
| 120 | 94, 117, 21, 118, 119 | ringlzd 20180 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑛 ∈ (Base‘𝑅)) →
((0g‘𝑅)(.r‘𝑅)𝑛) = (0g‘𝑅)) |
| 121 | 108 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 𝑖:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}⟶(Base‘𝑅)) |
| 122 | | elrabi 3643 |
. . . . . . . . . 10
⊢ (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} → 𝑣 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 123 | 122 | adantl 481 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 𝑣 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 124 | 121, 123 | ffvelcdmd 7019 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → (𝑖‘𝑣) ∈ (Base‘𝑅)) |
| 125 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝑗 ∈ 𝑀) |
| 126 | 104, 125 | sselid 3933 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝑗 ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 127 | 126 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 𝑗 ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 128 | 83, 94, 20, 103, 127 | psrelbas 21841 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 𝑗:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}⟶(Base‘𝑅)) |
| 129 | 69 | ad5ant14 757 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → (𝑥 ∘ 𝐷) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 130 | 7 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 𝐼 ∈ 𝑉) |
| 131 | 49 | a1i 11 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → ℕ0
∈ V) |
| 132 | 51, 123 | sselid 3933 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 𝑣 ∈ (ℕ0
↑m 𝐼)) |
| 133 | 130, 131,
132 | elmaprd 32630 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 𝑣:𝐼⟶ℕ0) |
| 134 | | breq1 5095 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑣 → (𝑤 ∘r ≤ (𝑥 ∘ 𝐷) ↔ 𝑣 ∘r ≤ (𝑥 ∘ 𝐷))) |
| 135 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) |
| 136 | 134, 135 | elrabrd 32447 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 𝑣 ∘r ≤ (𝑥 ∘ 𝐷)) |
| 137 | 20 | psrbagcon 21832 |
. . . . . . . . . . 11
⊢ (((𝑥 ∘ 𝐷) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∧
𝑣:𝐼⟶ℕ0 ∧ 𝑣 ∘r ≤ (𝑥 ∘ 𝐷)) → (((𝑥 ∘ 𝐷) ∘f − 𝑣) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∧
((𝑥 ∘ 𝐷) ∘f −
𝑣) ∘r ≤
(𝑥 ∘ 𝐷))) |
| 138 | 129, 133,
136, 137 | syl3anc 1373 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → (((𝑥 ∘ 𝐷) ∘f − 𝑣) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∧
((𝑥 ∘ 𝐷) ∘f −
𝑣) ∘r ≤
(𝑥 ∘ 𝐷))) |
| 139 | 138 | simpld 494 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → ((𝑥 ∘ 𝐷) ∘f − 𝑣) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 140 | 128, 139 | ffvelcdmd 7019 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → (𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣)) ∈ (Base‘𝑅)) |
| 141 | 116, 120,
124, 140, 115 | fsuppssov1 9274 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣)))) finSupp
(0g‘𝑅)) |
| 142 | | ssidd 3959 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(Base‘𝑅) ⊆
(Base‘𝑅)) |
| 143 | 8 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 𝑅 ∈ Ring) |
| 144 | 94, 117, 143, 124, 140 | ringcld 20145 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣))) ∈ (Base‘𝑅)) |
| 145 | | breq1 5095 |
. . . . . . . 8
⊢ (𝑤 = (𝑦 ∘ 𝐷) → (𝑤 ∘r ≤ (𝑥 ∘ 𝐷) ↔ (𝑦 ∘ 𝐷) ∘r ≤ (𝑥 ∘ 𝐷))) |
| 146 | 7 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝐼 ∈ 𝑉) |
| 147 | 26 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝐷 ∈ 𝑃) |
| 148 | 147 | ad2antrr 726 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝐷 ∈ 𝑃) |
| 149 | | ssrab2 4031 |
. . . . . . . . . . 11
⊢ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥} ⊆ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0} |
| 150 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) |
| 151 | 149, 150 | sselid 3933 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 152 | 151 | adantlr 715 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 153 | 28, 29, 146, 148, 152 | mplvrpmlem 33554 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝑦 ∘ 𝐷) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 154 | 49 | a1i 11 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) →
ℕ0 ∈ V) |
| 155 | 51 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} ⊆ (ℕ0
↑m 𝐼)) |
| 156 | 149, 155 | sstrid 3947 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
{𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥} ⊆
(ℕ0 ↑m 𝐼)) |
| 157 | 156 | sselda 3935 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝑦 ∈ (ℕ0
↑m 𝐼)) |
| 158 | 146, 154,
157 | elmaprd 32630 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝑦:𝐼⟶ℕ0) |
| 159 | 158 | ffnd 6653 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝑦 Fn 𝐼) |
| 160 | 54 | ad4ant14 752 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥:𝐼⟶ℕ0) |
| 161 | 160 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝑥:𝐼⟶ℕ0) |
| 162 | 161 | ffnd 6653 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝑥 Fn 𝐼) |
| 163 | 62 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝐷:𝐼⟶𝐼) |
| 164 | | breq1 5095 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → (𝑧 ∘r ≤ 𝑥 ↔ 𝑦 ∘r ≤ 𝑥)) |
| 165 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) |
| 166 | 164, 165 | elrabrd 32447 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝑦 ∘r ≤ 𝑥) |
| 167 | 159, 162,
163, 146, 146, 166 | ofrco 32562 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝑦 ∘ 𝐷) ∘r ≤ (𝑥 ∘ 𝐷)) |
| 168 | 145, 153,
167 | elrabd 3650 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝑦 ∘ 𝐷) ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) |
| 169 | | breq1 5095 |
. . . . . . . . 9
⊢ (𝑧 = (𝑣 ∘ ◡𝐷) → (𝑧 ∘r ≤ 𝑥 ↔ (𝑣 ∘ ◡𝐷) ∘r ≤ 𝑥)) |
| 170 | | breq1 5095 |
. . . . . . . . . 10
⊢ (ℎ = (𝑣 ∘ ◡𝐷) → (ℎ finSupp 0 ↔ (𝑣 ∘ ◡𝐷) finSupp 0)) |
| 171 | 42 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → ◡𝐷:𝐼⟶𝐼) |
| 172 | 133, 171 | fcod 6677 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → (𝑣 ∘ ◡𝐷):𝐼⟶ℕ0) |
| 173 | 131, 130,
172 | elmapdd 8768 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → (𝑣 ∘ ◡𝐷) ∈ (ℕ0
↑m 𝐼)) |
| 174 | | breq1 5095 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑣 → (ℎ finSupp 0 ↔ 𝑣 finSupp 0)) |
| 175 | 174, 123 | elrabrd 32447 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 𝑣 finSupp 0) |
| 176 | 39 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 𝐷:𝐼–1-1-onto→𝐼) |
| 177 | | f1of1 6763 |
. . . . . . . . . . . 12
⊢ (◡𝐷:𝐼–1-1-onto→𝐼 → ◡𝐷:𝐼–1-1→𝐼) |
| 178 | 176, 40, 177 | 3syl 18 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → ◡𝐷:𝐼–1-1→𝐼) |
| 179 | 43 | a1i 11 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 0 ∈
ℕ0) |
| 180 | 175, 178,
179, 123 | fsuppco 9292 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → (𝑣 ∘ ◡𝐷) finSupp 0) |
| 181 | 170, 173,
180 | elrabd 3650 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → (𝑣 ∘ ◡𝐷) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 182 | 133 | ffnd 6653 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 𝑣 Fn 𝐼) |
| 183 | 160 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 𝑥:𝐼⟶ℕ0) |
| 184 | 183 | ffnd 6653 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 𝑥 Fn 𝐼) |
| 185 | 62 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → 𝐷:𝐼⟶𝐼) |
| 186 | | fnfco 6689 |
. . . . . . . . . . . 12
⊢ ((𝑥 Fn 𝐼 ∧ 𝐷:𝐼⟶𝐼) → (𝑥 ∘ 𝐷) Fn 𝐼) |
| 187 | 184, 185,
186 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → (𝑥 ∘ 𝐷) Fn 𝐼) |
| 188 | 182, 187,
171, 130, 130, 136 | ofrco 32562 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → (𝑣 ∘ ◡𝐷) ∘r ≤ ((𝑥 ∘ 𝐷) ∘ ◡𝐷)) |
| 189 | 176, 31 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → (𝐷 ∘ ◡𝐷) = ( I ↾ 𝐼)) |
| 190 | 189 | coeq2d 5805 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → (𝑥 ∘ (𝐷 ∘ ◡𝐷)) = (𝑥 ∘ ( I ↾ 𝐼))) |
| 191 | 183, 55 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → (𝑥 ∘ ( I ↾ 𝐼)) = 𝑥) |
| 192 | 190, 191 | eqtrd 2764 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → (𝑥 ∘ (𝐷 ∘ ◡𝐷)) = 𝑥) |
| 193 | 37, 192 | eqtrid 2776 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → ((𝑥 ∘ 𝐷) ∘ ◡𝐷) = 𝑥) |
| 194 | 188, 193 | breqtrd 5118 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → (𝑣 ∘ ◡𝐷) ∘r ≤ 𝑥) |
| 195 | 169, 181,
194 | elrabd 3650 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → (𝑣 ∘ ◡𝐷) ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) |
| 196 | 133 | adantr 480 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝑣:𝐼⟶ℕ0) |
| 197 | 158 | adantlr 715 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝑦:𝐼⟶ℕ0) |
| 198 | 39 | ad5antr 734 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝐷:𝐼–1-1-onto→𝐼) |
| 199 | 196, 197,
198 | cocnvf1o 32681 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝑣 = (𝑦 ∘ 𝐷) ↔ 𝑦 = (𝑣 ∘ ◡𝐷))) |
| 200 | 195, 199 | reu6dv 32421 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) → ∃!𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}𝑣 = (𝑦 ∘ 𝐷)) |
| 201 | 93, 94, 21, 98, 100, 102, 141, 142, 144, 168, 200 | gsummptfsf1o 33016 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑅
Σg (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣))))) = (𝑅 Σg (𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥} ↦ ((𝑖‘(𝑦 ∘ 𝐷))(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − (𝑦 ∘ 𝐷))))))) |
| 202 | | coeq1 5800 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑦 → (𝑡 ∘ 𝐷) = (𝑦 ∘ 𝐷)) |
| 203 | 202 | fveq2d 6826 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑦 → (𝑖‘(𝑡 ∘ 𝐷)) = (𝑖‘(𝑦 ∘ 𝐷))) |
| 204 | | oveq2 7357 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑖 → (𝐷𝐴𝑓) = (𝐷𝐴𝑖)) |
| 205 | 105 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝑖 ∈ 𝑀) |
| 206 | | ovexd 7384 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝐷𝐴𝑖) ∈ V) |
| 207 | 10, 204, 205, 206 | fvmptd3 6953 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝐹‘𝑖) = (𝐷𝐴𝑖)) |
| 208 | 12 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝐴 = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))))) |
| 209 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑖) → 𝑓 = 𝑖) |
| 210 | | coeq2 5801 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = 𝐷 → (𝑥 ∘ 𝑑) = (𝑥 ∘ 𝐷)) |
| 211 | 210 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑖) → (𝑥 ∘ 𝑑) = (𝑥 ∘ 𝐷)) |
| 212 | 209, 211 | fveq12d 6829 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑖) → (𝑓‘(𝑥 ∘ 𝑑)) = (𝑖‘(𝑥 ∘ 𝐷))) |
| 213 | 212 | mpteq2dv 5186 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑖) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑖‘(𝑥 ∘ 𝐷)))) |
| 214 | | coeq1 5800 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑡 → (𝑥 ∘ 𝐷) = (𝑡 ∘ 𝐷)) |
| 215 | 214 | fveq2d 6826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑡 → (𝑖‘(𝑥 ∘ 𝐷)) = (𝑖‘(𝑡 ∘ 𝐷))) |
| 216 | 215 | cbvmptv 5196 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑖‘(𝑥 ∘ 𝐷))) = (𝑡 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑖‘(𝑡 ∘ 𝐷))) |
| 217 | 213, 216 | eqtrdi 2780 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑖) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑡 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑖‘(𝑡 ∘ 𝐷)))) |
| 218 | 217 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ (𝑑 = 𝐷 ∧ 𝑓 = 𝑖)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑡 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑖‘(𝑡 ∘ 𝐷)))) |
| 219 | 147 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝐷 ∈ 𝑃) |
| 220 | 79 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∈
V) |
| 221 | 220 | mptexd 7160 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝑡 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑖‘(𝑡 ∘ 𝐷))) ∈ V) |
| 222 | 208, 218,
219, 205, 221 | ovmpod 7501 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝐷𝐴𝑖) = (𝑡 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑖‘(𝑡 ∘ 𝐷)))) |
| 223 | 207, 222 | eqtrd 2764 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝐹‘𝑖) = (𝑡 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑖‘(𝑡 ∘ 𝐷)))) |
| 224 | | fvexd 6837 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝑖‘(𝑦 ∘ 𝐷)) ∈ V) |
| 225 | 203, 223,
151, 224 | fvmptd4 6954 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → ((𝐹‘𝑖)‘𝑦) = (𝑖‘(𝑦 ∘ 𝐷))) |
| 226 | 225 | adantlr 715 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → ((𝐹‘𝑖)‘𝑦) = (𝑖‘(𝑦 ∘ 𝐷))) |
| 227 | | oveq2 7357 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑗 → (𝐷𝐴𝑓) = (𝐷𝐴𝑗)) |
| 228 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑗) → 𝑓 = 𝑗) |
| 229 | 210 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑗) → (𝑥 ∘ 𝑑) = (𝑥 ∘ 𝐷)) |
| 230 | 228, 229 | fveq12d 6829 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑗) → (𝑓‘(𝑥 ∘ 𝑑)) = (𝑗‘(𝑥 ∘ 𝐷))) |
| 231 | 230 | mpteq2dv 5186 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑗) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑥 ∘ 𝐷)))) |
| 232 | 214 | fveq2d 6826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑡 → (𝑗‘(𝑥 ∘ 𝐷)) = (𝑗‘(𝑡 ∘ 𝐷))) |
| 233 | 232 | cbvmptv 5196 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑥 ∘ 𝐷))) = (𝑡 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑡 ∘ 𝐷))) |
| 234 | 231, 233 | eqtrdi 2780 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 = 𝐷 ∧ 𝑓 = 𝑗) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑡 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑡 ∘ 𝐷)))) |
| 235 | 234 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ (𝑑 = 𝐷 ∧ 𝑓 = 𝑗)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑡 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑡 ∘ 𝐷)))) |
| 236 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝑗 ∈ 𝑀) |
| 237 | 220 | mptexd 7160 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝑡 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑡 ∘ 𝐷))) ∈ V) |
| 238 | 208, 235,
219, 236, 237 | ovmpod 7501 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝐷𝐴𝑗) = (𝑡 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑡 ∘ 𝐷)))) |
| 239 | 227, 238 | sylan9eqr 2786 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑓 = 𝑗) → (𝐷𝐴𝑓) = (𝑡 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑡 ∘ 𝐷)))) |
| 240 | 239 | adantllr 719 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑓 = 𝑗) → (𝐷𝐴𝑓) = (𝑡 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑡 ∘ 𝐷)))) |
| 241 | 125 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝑗 ∈ 𝑀) |
| 242 | 79 | a1i 11 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∈
V) |
| 243 | 242 | mptexd 7160 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝑡 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑡 ∘ 𝐷))) ∈ V) |
| 244 | 10, 240, 241, 243 | fvmptd2 6938 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝐹‘𝑗) = (𝑡 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑗‘(𝑡 ∘ 𝐷)))) |
| 245 | | coeq1 5800 |
. . . . . . . . . . . . 13
⊢ (𝑡 = (𝑥 ∘f − 𝑦) → (𝑡 ∘ 𝐷) = ((𝑥 ∘f − 𝑦) ∘ 𝐷)) |
| 246 | 245 | fveq2d 6826 |
. . . . . . . . . . . 12
⊢ (𝑡 = (𝑥 ∘f − 𝑦) → (𝑗‘(𝑡 ∘ 𝐷)) = (𝑗‘((𝑥 ∘f − 𝑦) ∘ 𝐷))) |
| 247 | 246 | adantl 481 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑡 = (𝑥 ∘f − 𝑦)) → (𝑗‘(𝑡 ∘ 𝐷)) = (𝑗‘((𝑥 ∘f − 𝑦) ∘ 𝐷))) |
| 248 | 160 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑡 = (𝑥 ∘f − 𝑦)) → 𝑥:𝐼⟶ℕ0) |
| 249 | 248 | ffnd 6653 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑡 = (𝑥 ∘f − 𝑦)) → 𝑥 Fn 𝐼) |
| 250 | 7 | ad5antr 734 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑡 = (𝑥 ∘f − 𝑦)) → 𝐼 ∈ 𝑉) |
| 251 | 49 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑡 = (𝑥 ∘f − 𝑦)) → ℕ0
∈ V) |
| 252 | 157 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑡 = (𝑥 ∘f − 𝑦)) → 𝑦 ∈ (ℕ0
↑m 𝐼)) |
| 253 | 250, 251,
252 | elmaprd 32630 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑡 = (𝑥 ∘f − 𝑦)) → 𝑦:𝐼⟶ℕ0) |
| 254 | 253 | ffnd 6653 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑡 = (𝑥 ∘f − 𝑦)) → 𝑦 Fn 𝐼) |
| 255 | 62 | ad5antr 734 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑡 = (𝑥 ∘f − 𝑦)) → 𝐷:𝐼⟶𝐼) |
| 256 | | inidm 4178 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
| 257 | 249, 254,
255, 250, 250, 250, 256 | ofco 7638 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑡 = (𝑥 ∘f − 𝑦)) → ((𝑥 ∘f − 𝑦) ∘ 𝐷) = ((𝑥 ∘ 𝐷) ∘f − (𝑦 ∘ 𝐷))) |
| 258 | 257 | fveq2d 6826 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑡 = (𝑥 ∘f − 𝑦)) → (𝑗‘((𝑥 ∘f − 𝑦) ∘ 𝐷)) = (𝑗‘((𝑥 ∘ 𝐷) ∘f − (𝑦 ∘ 𝐷)))) |
| 259 | 247, 258 | eqtrd 2764 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑡 = (𝑥 ∘f − 𝑦)) → (𝑗‘(𝑡 ∘ 𝐷)) = (𝑗‘((𝑥 ∘ 𝐷) ∘f − (𝑦 ∘ 𝐷)))) |
| 260 | | breq1 5095 |
. . . . . . . . . . 11
⊢ (ℎ = (𝑥 ∘f − 𝑦) → (ℎ finSupp 0 ↔ (𝑥 ∘f − 𝑦) finSupp 0)) |
| 261 | 162, 159,
146, 146, 256 | offn 7626 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝑥 ∘f −
𝑦) Fn 𝐼) |
| 262 | 162 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ 𝐼) → 𝑥 Fn 𝐼) |
| 263 | 159 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ 𝐼) → 𝑦 Fn 𝐼) |
| 264 | 146 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ 𝐼) → 𝐼 ∈ 𝑉) |
| 265 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ 𝐼) |
| 266 | | fnfvof 7630 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 Fn 𝐼 ∧ 𝑦 Fn 𝐼) ∧ (𝐼 ∈ 𝑉 ∧ 𝑎 ∈ 𝐼)) → ((𝑥 ∘f − 𝑦)‘𝑎) = ((𝑥‘𝑎) − (𝑦‘𝑎))) |
| 267 | 262, 263,
264, 265, 266 | syl22anc 838 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ 𝐼) → ((𝑥 ∘f − 𝑦)‘𝑎) = ((𝑥‘𝑎) − (𝑦‘𝑎))) |
| 268 | 158 | ffvelcdmda 7018 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ 𝐼) → (𝑦‘𝑎) ∈
ℕ0) |
| 269 | 161 | ffvelcdmda 7018 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ 𝐼) → (𝑥‘𝑎) ∈
ℕ0) |
| 270 | | simplr 768 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ 𝐼) → 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) |
| 271 | 164, 270 | elrabrd 32447 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ 𝐼) → 𝑦 ∘r ≤ 𝑥) |
| 272 | 263, 262,
264, 271, 265 | fnfvor 32561 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ 𝐼) → (𝑦‘𝑎) ≤ (𝑥‘𝑎)) |
| 273 | | nn0sub 12434 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦‘𝑎) ∈ ℕ0 ∧ (𝑥‘𝑎) ∈ ℕ0) → ((𝑦‘𝑎) ≤ (𝑥‘𝑎) ↔ ((𝑥‘𝑎) − (𝑦‘𝑎)) ∈
ℕ0)) |
| 274 | 273 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦‘𝑎) ∈ ℕ0 ∧ (𝑥‘𝑎) ∈ ℕ0) ∧ (𝑦‘𝑎) ≤ (𝑥‘𝑎)) → ((𝑥‘𝑎) − (𝑦‘𝑎)) ∈
ℕ0) |
| 275 | 268, 269,
272, 274 | syl21anc 837 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ 𝐼) → ((𝑥‘𝑎) − (𝑦‘𝑎)) ∈
ℕ0) |
| 276 | 267, 275 | eqeltrd 2828 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ 𝐼) → ((𝑥 ∘f − 𝑦)‘𝑎) ∈
ℕ0) |
| 277 | 276 | ralrimiva 3121 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → ∀𝑎 ∈ 𝐼 ((𝑥 ∘f − 𝑦)‘𝑎) ∈
ℕ0) |
| 278 | | ffnfv 7053 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∘f −
𝑦):𝐼⟶ℕ0 ↔ ((𝑥 ∘f −
𝑦) Fn 𝐼 ∧ ∀𝑎 ∈ 𝐼 ((𝑥 ∘f − 𝑦)‘𝑎) ∈
ℕ0)) |
| 279 | 261, 277,
278 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝑥 ∘f −
𝑦):𝐼⟶ℕ0) |
| 280 | 154, 146,
279 | elmapdd 8768 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝑥 ∘f −
𝑦) ∈
(ℕ0 ↑m 𝐼)) |
| 281 | | ovexd 7384 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝑥 ∘f −
𝑦) ∈
V) |
| 282 | 43 | a1i 11 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 0 ∈
ℕ0) |
| 283 | 162, 159,
146, 146 | offun 7627 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → Fun (𝑥 ∘f −
𝑦)) |
| 284 | 20 | psrbagfsupp 21826 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} →
𝑥 finSupp
0) |
| 285 | 284 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → 𝑥 finSupp 0) |
| 286 | | dffn2 6654 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∘f −
𝑦) Fn 𝐼 ↔ (𝑥 ∘f − 𝑦):𝐼⟶V) |
| 287 | 261, 286 | sylib 218 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝑥 ∘f −
𝑦):𝐼⟶V) |
| 288 | 162 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → 𝑥 Fn 𝐼) |
| 289 | 159 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → 𝑦 Fn 𝐼) |
| 290 | 146 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → 𝐼 ∈ 𝑉) |
| 291 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) |
| 292 | 291 | eldifad 3915 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → 𝑎 ∈ 𝐼) |
| 293 | 288, 289,
290, 292, 266 | syl22anc 838 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → ((𝑥 ∘f − 𝑦)‘𝑎) = ((𝑥‘𝑎) − (𝑦‘𝑎))) |
| 294 | 43 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → 0 ∈
ℕ0) |
| 295 | 288, 290,
294, 291 | fvdifsupp 8104 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → (𝑥‘𝑎) = 0) |
| 296 | 158 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → 𝑦:𝐼⟶ℕ0) |
| 297 | 296, 292 | ffvelcdmd 7019 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → (𝑦‘𝑎) ∈
ℕ0) |
| 298 | | simplr 768 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → 𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) |
| 299 | 164, 298 | elrabrd 32447 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → 𝑦 ∘r ≤ 𝑥) |
| 300 | 289, 288,
290, 299, 292 | fnfvor 32561 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → (𝑦‘𝑎) ≤ (𝑥‘𝑎)) |
| 301 | 300, 295 | breqtrd 5118 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → (𝑦‘𝑎) ≤ 0) |
| 302 | | nn0le0eq0 12412 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦‘𝑎) ∈ ℕ0 → ((𝑦‘𝑎) ≤ 0 ↔ (𝑦‘𝑎) = 0)) |
| 303 | 302 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦‘𝑎) ∈ ℕ0 ∧ (𝑦‘𝑎) ≤ 0) → (𝑦‘𝑎) = 0) |
| 304 | 297, 301,
303 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → (𝑦‘𝑎) = 0) |
| 305 | 295, 304 | oveq12d 7367 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → ((𝑥‘𝑎) − (𝑦‘𝑎)) = (0 − 0)) |
| 306 | | 0m0e0 12243 |
. . . . . . . . . . . . . . 15
⊢ (0
− 0) = 0 |
| 307 | 306 | a1i 11 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → (0 − 0) =
0) |
| 308 | 293, 305,
307 | 3eqtrd 2768 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) ∧ 𝑎 ∈ (𝐼 ∖ (𝑥 supp 0))) → ((𝑥 ∘f − 𝑦)‘𝑎) = 0) |
| 309 | 287, 308 | suppss 8127 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → ((𝑥 ∘f −
𝑦) supp 0) ⊆ (𝑥 supp 0)) |
| 310 | 281, 282,
283, 285, 309 | fsuppsssuppgd 9272 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝑥 ∘f −
𝑦) finSupp
0) |
| 311 | 260, 280,
310 | elrabd 3650 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝑥 ∘f −
𝑦) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 312 | | fvexd 6837 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (𝑗‘((𝑥 ∘ 𝐷) ∘f − (𝑦 ∘ 𝐷))) ∈ V) |
| 313 | 244, 259,
311, 312 | fvmptd 6937 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → ((𝐹‘𝑗)‘(𝑥 ∘f − 𝑦)) = (𝑗‘((𝑥 ∘ 𝐷) ∘f − (𝑦 ∘ 𝐷)))) |
| 314 | 226, 313 | oveq12d 7367 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥}) → (((𝐹‘𝑖)‘𝑦)(.r‘𝑅)((𝐹‘𝑗)‘(𝑥 ∘f − 𝑦))) = ((𝑖‘(𝑦 ∘ 𝐷))(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − (𝑦 ∘ 𝐷))))) |
| 315 | 314 | mpteq2dva 5185 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥} ↦ (((𝐹‘𝑖)‘𝑦)(.r‘𝑅)((𝐹‘𝑗)‘(𝑥 ∘f − 𝑦)))) = (𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥} ↦ ((𝑖‘(𝑦 ∘ 𝐷))(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − (𝑦 ∘ 𝐷)))))) |
| 316 | 315 | oveq2d 7365 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑅
Σg (𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥} ↦ (((𝐹‘𝑖)‘𝑦)(.r‘𝑅)((𝐹‘𝑗)‘(𝑥 ∘f − 𝑦))))) = (𝑅 Σg (𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥} ↦ ((𝑖‘(𝑦 ∘ 𝐷))(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − (𝑦 ∘ 𝐷))))))) |
| 317 | 201, 316 | eqtr4d 2767 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑅
Σg (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣))))) = (𝑅 Σg (𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥} ↦ (((𝐹‘𝑖)‘𝑦)(.r‘𝑅)((𝐹‘𝑗)‘(𝑥 ∘f − 𝑦)))))) |
| 318 | 317 | mpteq2dva 5185 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑅
Σg (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣)))))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑅
Σg (𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥} ↦ (((𝐹‘𝑖)‘𝑦)(.r‘𝑅)((𝐹‘𝑗)‘(𝑥 ∘f − 𝑦))))))) |
| 319 | | oveq2 7357 |
. . . . . 6
⊢ (𝑓 = (𝑖(.r‘𝑊)𝑗) → (𝐷𝐴𝑓) = (𝐷𝐴(𝑖(.r‘𝑊)𝑗))) |
| 320 | 12 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝐴 = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))))) |
| 321 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) → 𝑓 = (𝑖(.r‘𝑊)𝑗)) |
| 322 | 2, 4, 117, 6, 20, 105, 125 | mplmul 21918 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝑖(.r‘𝑊)𝑗) = (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑅
Σg (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
𝑢} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘(𝑢 ∘f − 𝑣))))))) |
| 323 | 322 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) → (𝑖(.r‘𝑊)𝑗) = (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑅
Σg (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
𝑢} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘(𝑢 ∘f − 𝑣))))))) |
| 324 | 321, 323 | eqtrd 2764 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) → 𝑓 = (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑅
Σg (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
𝑢} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘(𝑢 ∘f − 𝑣))))))) |
| 325 | 324 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑓 = (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑅
Σg (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
𝑢} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘(𝑢 ∘f − 𝑣))))))) |
| 326 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑢 = (𝑥 ∘ 𝑑)) → 𝑢 = (𝑥 ∘ 𝑑)) |
| 327 | | simplrl 776 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑑 = 𝐷) |
| 328 | 327 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑢 = (𝑥 ∘ 𝑑)) → 𝑑 = 𝐷) |
| 329 | 328 | coeq2d 5805 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑢 = (𝑥 ∘ 𝑑)) → (𝑥 ∘ 𝑑) = (𝑥 ∘ 𝐷)) |
| 330 | 326, 329 | eqtrd 2764 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑢 = (𝑥 ∘ 𝑑)) → 𝑢 = (𝑥 ∘ 𝐷)) |
| 331 | 330 | breq2d 5104 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑢 = (𝑥 ∘ 𝑑)) → (𝑤 ∘r ≤ 𝑢 ↔ 𝑤 ∘r ≤ (𝑥 ∘ 𝐷))) |
| 332 | 331 | rabbidv 3402 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑢 = (𝑥 ∘ 𝑑)) → {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
𝑢} = {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)}) |
| 333 | 330 | fvoveq1d 7371 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑢 = (𝑥 ∘ 𝑑)) → (𝑗‘(𝑢 ∘f − 𝑣)) = (𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣))) |
| 334 | 333 | oveq2d 7365 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑢 = (𝑥 ∘ 𝑑)) → ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘(𝑢 ∘f − 𝑣))) = ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣)))) |
| 335 | 332, 334 | mpteq12dv 5179 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑢 = (𝑥 ∘ 𝑑)) → (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
𝑢} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘(𝑢 ∘f − 𝑣)))) = (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣))))) |
| 336 | 335 | oveq2d 7365 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) ∧
𝑢 = (𝑥 ∘ 𝑑)) → (𝑅 Σg (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
𝑢} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘(𝑢 ∘f − 𝑣))))) = (𝑅 Σg (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣)))))) |
| 337 | 7 | ad4antr 732 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝐼 ∈ 𝑉) |
| 338 | 26 | ad4antr 732 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝐷 ∈ 𝑃) |
| 339 | 327, 338 | eqeltrd 2828 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑑 ∈ 𝑃) |
| 340 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 341 | 28, 29, 337, 339, 340 | mplvrpmlem 33554 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝑑) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 342 | | ovexd 7384 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑅
Σg (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣))))) ∈ V) |
| 343 | 325, 336,
341, 342 | fvmptd 6937 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑓‘(𝑥 ∘ 𝑑)) = (𝑅 Σg (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣)))))) |
| 344 | 343 | mpteq2dva 5185 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ (𝑑 = 𝐷 ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗))) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑅
Σg (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣))))))) |
| 345 | 9 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝑊 ∈ Ring) |
| 346 | 4, 6, 345, 105, 125 | ringcld 20145 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝑖(.r‘𝑊)𝑗) ∈ 𝑀) |
| 347 | 79 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∈
V) |
| 348 | 347 | mptexd 7160 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑅
Σg (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣)))))) ∈
V) |
| 349 | 320, 344,
147, 346, 348 | ovmpod 7501 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐷𝐴(𝑖(.r‘𝑊)𝑗)) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑅
Σg (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣))))))) |
| 350 | 319, 349 | sylan9eqr 2786 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) ∧ 𝑓 = (𝑖(.r‘𝑊)𝑗)) → (𝐷𝐴𝑓) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑅
Σg (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣))))))) |
| 351 | 10, 350, 346, 348 | fvmptd2 6938 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐹‘(𝑖(.r‘𝑊)𝑗)) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑅
Σg (𝑣 ∈ {𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑤 ∘r ≤
(𝑥 ∘ 𝐷)} ↦ ((𝑖‘𝑣)(.r‘𝑅)(𝑗‘((𝑥 ∘ 𝐷) ∘f − 𝑣))))))) |
| 352 | 28, 29, 1, 12, 7 | mplvrpmga 33556 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ (𝑆 GrpAct 𝑀)) |
| 353 | 29 | gaf 19174 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (𝑆 GrpAct 𝑀) → 𝐴:(𝑃 × 𝑀)⟶𝑀) |
| 354 | 352, 353 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴:(𝑃 × 𝑀)⟶𝑀) |
| 355 | 354 | fovcld 7476 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐷 ∈ 𝑃 ∧ 𝑓 ∈ 𝑀) → (𝐷𝐴𝑓) ∈ 𝑀) |
| 356 | 355 | 3expa 1118 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐷 ∈ 𝑃) ∧ 𝑓 ∈ 𝑀) → (𝐷𝐴𝑓) ∈ 𝑀) |
| 357 | 356 | an32s 652 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑀) ∧ 𝐷 ∈ 𝑃) → (𝐷𝐴𝑓) ∈ 𝑀) |
| 358 | 26, 357 | mpidan 689 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑀) → (𝐷𝐴𝑓) ∈ 𝑀) |
| 359 | 358, 10 | fmptd 7048 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑀⟶𝑀) |
| 360 | 359 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝐹:𝑀⟶𝑀) |
| 361 | 360, 105 | ffvelcdmd 7019 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐹‘𝑖) ∈ 𝑀) |
| 362 | 360, 125 | ffvelcdmd 7019 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐹‘𝑗) ∈ 𝑀) |
| 363 | 2, 4, 117, 6, 20, 361, 362 | mplmul 21918 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → ((𝐹‘𝑖)(.r‘𝑊)(𝐹‘𝑗)) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑅
Σg (𝑦 ∈ {𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∣
𝑧 ∘r ≤
𝑥} ↦ (((𝐹‘𝑖)‘𝑦)(.r‘𝑅)((𝐹‘𝑗)‘(𝑥 ∘f − 𝑦))))))) |
| 364 | 318, 351,
363 | 3eqtr4d 2774 |
. . 3
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐹‘(𝑖(.r‘𝑊)𝑗)) = ((𝐹‘𝑖)(.r‘𝑊)(𝐹‘𝑗))) |
| 365 | 364 | anasss 466 |
. 2
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑀)) → (𝐹‘(𝑖(.r‘𝑊)𝑗)) = ((𝐹‘𝑖)(.r‘𝑊)(𝐹‘𝑗))) |
| 366 | | eqid 2729 |
. 2
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 367 | 28, 29, 1, 12, 7, 10, 2, 8, 26 | mplvrpmmhm 33557 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝑊 MndHom 𝑊)) |
| 368 | 367 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → 𝐹 ∈ (𝑊 MndHom 𝑊)) |
| 369 | 4, 366, 366 | mhmlin 18667 |
. . . 4
⊢ ((𝐹 ∈ (𝑊 MndHom 𝑊) ∧ 𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑀) → (𝐹‘(𝑖(+g‘𝑊)𝑗)) = ((𝐹‘𝑖)(+g‘𝑊)(𝐹‘𝑗))) |
| 370 | 368, 105,
125, 369 | syl3anc 1373 |
. . 3
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑀) ∧ 𝑗 ∈ 𝑀) → (𝐹‘(𝑖(+g‘𝑊)𝑗)) = ((𝐹‘𝑖)(+g‘𝑊)(𝐹‘𝑗))) |
| 371 | 370 | anasss 466 |
. 2
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑀)) → (𝐹‘(𝑖(+g‘𝑊)𝑗)) = ((𝐹‘𝑖)(+g‘𝑊)(𝐹‘𝑗))) |
| 372 | 4, 5, 5, 6, 6, 9, 9, 92, 365, 4, 366, 366, 359, 371 | isrhmd 20373 |
1
⊢ (𝜑 → 𝐹 ∈ (𝑊 RingHom 𝑊)) |