![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrabd | Structured version Visualization version GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 3589. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
elrabd.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
elrabd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
elrabd.3 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
elrabd | ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrabd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | elrabd.3 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | elrabd.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
4 | 3 | elrab 3589 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓} ↔ (𝐴 ∈ 𝐵 ∧ 𝜒)) |
5 | 1, 2, 4 | sylanbrc 575 | 1 ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 ∈ wcel 2048 {crab 3086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-rab 3091 df-v 3411 |
This theorem is referenced by: nnawordex 8056 ordtypelem7 8775 oemapvali 8933 rankuni2b 9068 harval2 9212 fin23lem11 9529 fin1a2lem11 9622 pinq 10139 negf1o 10863 fiminreOLD 11383 uzind4 12113 zsupss 12144 flval3 12993 serge0 13232 expge0 13273 expge1 13274 hashbclem 13613 rlimrege0 14787 lcmgcdlem 15796 phicl2 15951 hashdvds 15958 phisum 15973 pcpremul 16026 prmreclem1 16098 prmreclem3 16100 prmreclem5 16102 ramub 16195 ramub1lem1 16208 ramub1lem2 16209 prmgaplem3 16235 prmgaplem4 16236 prmgaplem5 16237 prmgaplem6 16238 mrcflem 16725 mrcval 16729 isacs1i 16776 coaval 17176 gsumress 17734 issubmd 17807 mhmeql 17822 ghmeql 18142 pmtrval 18330 pmtrrn 18336 symgsssg 18346 symgfisg 18347 psgnunilem5 18373 pgpssslw 18490 efgsfo 18614 oddvdssubg 18721 dprdwd 18873 lmhmeql 19539 gsumbagdiaglem 19859 psrlidm 19887 psrridm 19888 mplmonmul 19948 coe1fsupp 20075 cofipsgn 20429 frlmssuvc2 20631 dmatmulcl 20803 fctop 21306 cctop 21308 ppttop 21309 pptbas 21310 epttop 21311 ordthauslem 21685 cmpsublem 21701 locfincmp 21828 xkoopn 21891 pthaus 21940 txkgen 21954 xkohaus 21955 xkococnlem 21961 nrmr0reg 22051 fbssfi 22139 filssufilg 22213 uffixsn 22227 ufinffr 22231 ufilen 22232 supnfcls 22322 flimfnfcls 22330 alexsubALTlem4 22352 tmdgsum2 22398 symgtgp 22403 ghmcnp 22416 lmle 23597 iundisj 23842 opnmbllem 23895 vitalilem2 23903 aannenlem2 24611 aalioulem2 24615 radcnv0 24697 jensen 25258 ftalem4 25345 ftalem5 25346 efnnfsumcl 25372 efchtdvds 25428 sqff1o 25451 fsumdvdsdiaglem 25452 dvdsppwf1o 25455 dvdsflf1o 25456 muinv 25462 dchrfi 25523 lgsne0 25603 2lgslem1b 25660 upgr1elem 26590 subumgredg2 26760 subupgr 26762 upgrreslem 26779 umgrreslem 26780 1hevtxdg1 26981 umgr2v2e 27000 fnwe2lem2 38992 fnwe2lem3 38993 supminfrnmpt 41096 supminfxr 41117 supminfxr2 41122 supminfxrrnmpt 41124 smflimsuplem5 42475 rabsubmgmd 43366 |
Copyright terms: Public domain | W3C validator |