| Step | Hyp | Ref
| Expression |
| 1 | | extvfvvcl.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
| 2 | 1 | fvexi 6842 |
. . . . 5
⊢ 𝐵 ∈ V |
| 3 | 2 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ V) |
| 4 | | extvfvvcl.d |
. . . . . 6
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0} |
| 5 | | ovex 7385 |
. . . . . 6
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 6 | 4, 5 | rabex2 5281 |
. . . . 5
⊢ 𝐷 ∈ V |
| 7 | 6 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ V) |
| 8 | | fvexd 6843 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘(𝑥 ↾ 𝐽)) ∈ V) |
| 9 | | extvfvvcl.3 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑅) |
| 10 | 9 | fvexi 6842 |
. . . . . . 7
⊢ 0 ∈
V |
| 11 | 10 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 0 ∈ V) |
| 12 | 8, 11 | ifcld 4521 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → if((𝑥‘𝐴) = 0, (𝐹‘(𝑥 ↾ 𝐽)), 0 ) ∈
V) |
| 13 | | extvfvvcl.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 14 | | extvfvvcl.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 15 | | extvfvvcl.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝐼) |
| 16 | | extvfvvcl.j |
. . . . . 6
⊢ 𝐽 = (𝐼 ∖ {𝐴}) |
| 17 | | extvfvvcl.m |
. . . . . 6
⊢ 𝑀 = (Base‘(𝐽 mPoly 𝑅)) |
| 18 | | extvfvvcl.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝑀) |
| 19 | 4, 9, 13, 14, 15, 16, 17, 18 | extvfv 33584 |
. . . . 5
⊢ (𝜑 → (((𝐼extendVars𝑅)‘𝐴)‘𝐹) = (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝐴) = 0, (𝐹‘(𝑥 ↾ 𝐽)), 0 ))) |
| 20 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
| 21 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑅 ∈ Ring) |
| 22 | 15 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝐼) |
| 23 | 18 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐹 ∈ 𝑀) |
| 24 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝐷) |
| 25 | 4, 9, 20, 21, 1, 16, 17, 22, 23, 24 | extvfvvcl 33586 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((((𝐼extendVars𝑅)‘𝐴)‘𝐹)‘𝑥) ∈ 𝐵) |
| 26 | 12, 19, 25 | fmpt2d 7063 |
. . . 4
⊢ (𝜑 → (((𝐼extendVars𝑅)‘𝐴)‘𝐹):𝐷⟶𝐵) |
| 27 | 3, 7, 26 | elmapdd 8771 |
. . 3
⊢ (𝜑 → (((𝐼extendVars𝑅)‘𝐴)‘𝐹) ∈ (𝐵 ↑m 𝐷)) |
| 28 | | eqid 2733 |
. . . 4
⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) |
| 29 | 4 | psrbasfsupp 33579 |
. . . 4
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 30 | | eqid 2733 |
. . . 4
⊢
(Base‘(𝐼
mPwSer 𝑅)) =
(Base‘(𝐼 mPwSer 𝑅)) |
| 31 | 28, 1, 29, 30, 13 | psrbas 21872 |
. . 3
⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (𝐵 ↑m 𝐷)) |
| 32 | 27, 31 | eleqtrrd 2836 |
. 2
⊢ (𝜑 → (((𝐼extendVars𝑅)‘𝐴)‘𝐹) ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 33 | 7 | mptexd 7164 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝐴) = 0, (𝐹‘(𝑥 ↾ 𝐽)), 0 )) ∈
V) |
| 34 | 10 | a1i 11 |
. . . 4
⊢ (𝜑 → 0 ∈ V) |
| 35 | 12 | fmpttd 7054 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝐴) = 0, (𝐹‘(𝑥 ↾ 𝐽)), 0 )):𝐷⟶V) |
| 36 | 35 | ffund 6660 |
. . . 4
⊢ (𝜑 → Fun (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝐴) = 0, (𝐹‘(𝑥 ↾ 𝐽)), 0 ))) |
| 37 | | fveq1 6827 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑦‘𝐴) = (𝑥‘𝐴)) |
| 38 | 37 | eqeq1d 2735 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑦‘𝐴) = 0 ↔ (𝑥‘𝐴) = 0)) |
| 39 | 38 | cbvrabv 3406 |
. . . . . . . 8
⊢ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} = {𝑥 ∈ 𝐷 ∣ (𝑥‘𝐴) = 0} |
| 40 | 39 | partfun2 32661 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝐴) = 0, (𝐹‘(𝑥 ↾ 𝐽)), 0 )) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝐹‘(𝑥 ↾ 𝐽))) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ↦ 0 )) |
| 41 | 40 | oveq1i 7362 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐷 ↦ if((𝑥‘𝐴) = 0, (𝐹‘(𝑥 ↾ 𝐽)), 0 )) supp 0 ) = (((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝐹‘(𝑥 ↾ 𝐽))) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ↦ 0 )) supp 0 ) |
| 42 | 39, 7 | rabexd 5280 |
. . . . . . . 8
⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ∈ V) |
| 43 | 42 | mptexd 7164 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝐹‘(𝑥 ↾ 𝐽))) ∈ V) |
| 44 | 7 | difexd 5271 |
. . . . . . . 8
⊢ (𝜑 → (𝐷 ∖ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∈ V) |
| 45 | 44 | mptexd 7164 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝐷 ∖ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ↦ 0 ) ∈
V) |
| 46 | 43, 45, 34 | suppun2 32669 |
. . . . . 6
⊢ (𝜑 → (((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝐹‘(𝑥 ↾ 𝐽))) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ↦ 0 )) supp 0 ) = (((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝐹‘(𝑥 ↾ 𝐽))) supp 0 ) ∪ ((𝑥 ∈ (𝐷 ∖ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ↦ 0 ) supp 0 ))) |
| 47 | 41, 46 | eqtrid 2780 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ if((𝑥‘𝐴) = 0, (𝐹‘(𝑥 ↾ 𝐽)), 0 )) supp 0 ) = (((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝐹‘(𝑥 ↾ 𝐽))) supp 0 ) ∪ ((𝑥 ∈ (𝐷 ∖ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ↦ 0 ) supp 0 ))) |
| 48 | | eqid 2733 |
. . . . . . . . . 10
⊢ (𝐽 mPoly 𝑅) = (𝐽 mPoly 𝑅) |
| 49 | | eqid 2733 |
. . . . . . . . . . 11
⊢ {ℎ ∈ (ℕ0
↑m 𝐽)
∣ ℎ finSupp 0} =
{ℎ ∈
(ℕ0 ↑m 𝐽) ∣ ℎ finSupp 0} |
| 50 | 49 | psrbasfsupp 33579 |
. . . . . . . . . 10
⊢ {ℎ ∈ (ℕ0
↑m 𝐽)
∣ ℎ finSupp 0} =
{ℎ ∈
(ℕ0 ↑m 𝐽) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| 51 | 48, 1, 17, 50, 18 | mplelf 21936 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐽)
∣ ℎ finSupp
0}⟶𝐵) |
| 52 | | breq1 5096 |
. . . . . . . . . 10
⊢ (ℎ = (𝑥 ↾ 𝐽) → (ℎ finSupp 0 ↔ (𝑥 ↾ 𝐽) finSupp 0)) |
| 53 | | nn0ex 12394 |
. . . . . . . . . . . 12
⊢
ℕ0 ∈ V |
| 54 | 53 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) → ℕ0 ∈
V) |
| 55 | 13 | difexd 5271 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐼 ∖ {𝐴}) ∈ V) |
| 56 | 16, 55 | eqeltrid 2837 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ V) |
| 57 | 56 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) → 𝐽 ∈ V) |
| 58 | 13 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) → 𝐼 ∈ 𝑉) |
| 59 | | ssrab2 4029 |
. . . . . . . . . . . . . . 15
⊢ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ⊆ 𝐷 |
| 60 | | ssrab2 4029 |
. . . . . . . . . . . . . . . . 17
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ⊆
(ℕ0 ↑m 𝐼) |
| 61 | 60 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ⊆
(ℕ0 ↑m 𝐼)) |
| 62 | 4, 61 | eqsstrid 3969 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐷 ⊆ (ℕ0
↑m 𝐼)) |
| 63 | 59, 62 | sstrid 3942 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ⊆ (ℕ0
↑m 𝐼)) |
| 64 | 63 | sselda 3930 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) → 𝑥 ∈ (ℕ0
↑m 𝐼)) |
| 65 | 58, 54, 64 | elmaprd 32665 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) → 𝑥:𝐼⟶ℕ0) |
| 66 | | difssd 4086 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐼 ∖ {𝐴}) ⊆ 𝐼) |
| 67 | 16, 66 | eqsstrid 3969 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
| 68 | 67 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) → 𝐽 ⊆ 𝐼) |
| 69 | 65, 68 | fssresd 6695 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) → (𝑥 ↾ 𝐽):𝐽⟶ℕ0) |
| 70 | 54, 57, 69 | elmapdd 8771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) → (𝑥 ↾ 𝐽) ∈ (ℕ0
↑m 𝐽)) |
| 71 | 59 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ⊆ 𝐷) |
| 72 | 71 | sselda 3930 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) → 𝑥 ∈ 𝐷) |
| 73 | 29 | psrbagfsupp 21858 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐷 → 𝑥 finSupp 0) |
| 74 | 72, 73 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) → 𝑥 finSupp 0) |
| 75 | | c0ex 11113 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
| 76 | 75 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) → 0 ∈ V) |
| 77 | 74, 76 | fsuppres 9284 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) → (𝑥 ↾ 𝐽) finSupp 0) |
| 78 | 52, 70, 77 | elrabd 3645 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) → (𝑥 ↾ 𝐽) ∈ {ℎ ∈ (ℕ0
↑m 𝐽)
∣ ℎ finSupp
0}) |
| 79 | 51, 78 | cofmpt 7071 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝐹‘(𝑥 ↾ 𝐽)))) |
| 80 | 79 | oveq1d 7367 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ∘ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))) supp 0 ) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝐹‘(𝑥 ↾ 𝐽))) supp 0 )) |
| 81 | 42 | mptexd 7164 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)) ∈ V) |
| 82 | | suppco 8142 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝑀 ∧ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)) ∈ V) → ((𝐹 ∘ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))) supp 0 ) = (◡(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)) “ (𝐹 supp 0 ))) |
| 83 | 18, 81, 82 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 ∘ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))) supp 0 ) = (◡(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)) “ (𝐹 supp 0 ))) |
| 84 | 70 | fmpttd 7054 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)):{𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}⟶(ℕ0
↑m 𝐽)) |
| 85 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) |
| 86 | | eqid 2733 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)) |
| 87 | | reseq1 5926 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑢 → (𝑥 ↾ 𝐽) = (𝑢 ↾ 𝐽)) |
| 88 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) |
| 89 | 88 | resexd 5981 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → (𝑢 ↾ 𝐽) ∈ V) |
| 90 | 86, 87, 88, 89 | fvmptd3 6958 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = (𝑢 ↾ 𝐽)) |
| 91 | | reseq1 5926 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑣 → (𝑥 ↾ 𝐽) = (𝑣 ↾ 𝐽)) |
| 92 | | simplr 768 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) |
| 93 | 92 | resexd 5981 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → (𝑣 ↾ 𝐽) ∈ V) |
| 94 | 86, 91, 92, 93 | fvmptd3 6958 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣) = (𝑣 ↾ 𝐽)) |
| 95 | 85, 90, 94 | 3eqtr3d 2776 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → (𝑢 ↾ 𝐽) = (𝑣 ↾ 𝐽)) |
| 96 | 16 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝐽 = (𝐼 ∖ {𝐴})) |
| 97 | 96 | reseq2d 5932 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → (𝑢 ↾ 𝐽) = (𝑢 ↾ (𝐼 ∖ {𝐴}))) |
| 98 | 96 | reseq2d 5932 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → (𝑣 ↾ 𝐽) = (𝑣 ↾ (𝐼 ∖ {𝐴}))) |
| 99 | 95, 97, 98 | 3eqtr3d 2776 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → (𝑢 ↾ (𝐼 ∖ {𝐴})) = (𝑣 ↾ (𝐼 ∖ {𝐴}))) |
| 100 | | fveq1 6827 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑢 → (𝑦‘𝐴) = (𝑢‘𝐴)) |
| 101 | 100 | eqeq1d 2735 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑢 → ((𝑦‘𝐴) = 0 ↔ (𝑢‘𝐴) = 0)) |
| 102 | 101, 88 | elrabrd 32480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → (𝑢‘𝐴) = 0) |
| 103 | | fveq1 6827 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑣 → (𝑦‘𝐴) = (𝑣‘𝐴)) |
| 104 | 103 | eqeq1d 2735 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑣 → ((𝑦‘𝐴) = 0 ↔ (𝑣‘𝐴) = 0)) |
| 105 | 104, 92 | elrabrd 32480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → (𝑣‘𝐴) = 0) |
| 106 | 102, 105 | eqtr4d 2771 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → (𝑢‘𝐴) = (𝑣‘𝐴)) |
| 107 | 106 | opeq2d 4831 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 〈𝐴, (𝑢‘𝐴)〉 = 〈𝐴, (𝑣‘𝐴)〉) |
| 108 | 107 | sneqd 4587 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → {〈𝐴, (𝑢‘𝐴)〉} = {〈𝐴, (𝑣‘𝐴)〉}) |
| 109 | 99, 108 | uneq12d 4118 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → ((𝑢 ↾ (𝐼 ∖ {𝐴})) ∪ {〈𝐴, (𝑢‘𝐴)〉}) = ((𝑣 ↾ (𝐼 ∖ {𝐴})) ∪ {〈𝐴, (𝑣‘𝐴)〉})) |
| 110 | 13 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝐼 ∈ 𝑉) |
| 111 | 53 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → ℕ0 ∈
V) |
| 112 | 62 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝐷 ⊆ (ℕ0
↑m 𝐼)) |
| 113 | 59, 88 | sselid 3928 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝑢 ∈ 𝐷) |
| 114 | 112, 113 | sseldd 3931 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝑢 ∈ (ℕ0
↑m 𝐼)) |
| 115 | 110, 111,
114 | elmaprd 32665 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝑢:𝐼⟶ℕ0) |
| 116 | 115 | ffnd 6657 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝑢 Fn 𝐼) |
| 117 | 15 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝐴 ∈ 𝐼) |
| 118 | | fnsnsplit 7124 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 Fn 𝐼 ∧ 𝐴 ∈ 𝐼) → 𝑢 = ((𝑢 ↾ (𝐼 ∖ {𝐴})) ∪ {〈𝐴, (𝑢‘𝐴)〉})) |
| 119 | 116, 117,
118 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝑢 = ((𝑢 ↾ (𝐼 ∖ {𝐴})) ∪ {〈𝐴, (𝑢‘𝐴)〉})) |
| 120 | 59, 92 | sselid 3928 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝑣 ∈ 𝐷) |
| 121 | 112, 120 | sseldd 3931 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝑣 ∈ (ℕ0
↑m 𝐼)) |
| 122 | 110, 111,
121 | elmaprd 32665 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝑣:𝐼⟶ℕ0) |
| 123 | 122 | ffnd 6657 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝑣 Fn 𝐼) |
| 124 | | fnsnsplit 7124 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 Fn 𝐼 ∧ 𝐴 ∈ 𝐼) → 𝑣 = ((𝑣 ↾ (𝐼 ∖ {𝐴})) ∪ {〈𝐴, (𝑣‘𝐴)〉})) |
| 125 | 123, 117,
124 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝑣 = ((𝑣 ↾ (𝐼 ∖ {𝐴})) ∪ {〈𝐴, (𝑣‘𝐴)〉})) |
| 126 | 109, 119,
125 | 3eqtr4d 2778 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣)) → 𝑢 = 𝑣) |
| 127 | 126 | ex 412 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) → (((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣) → 𝑢 = 𝑣)) |
| 128 | 127 | anasss 466 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ∧ 𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0})) → (((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣) → 𝑢 = 𝑣)) |
| 129 | 128 | ralrimivva 3176 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}∀𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} (((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣) → 𝑢 = 𝑣)) |
| 130 | | dff13 7194 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)):{𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}–1-1→(ℕ0 ↑m 𝐽) ↔ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)):{𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}⟶(ℕ0
↑m 𝐽) ∧
∀𝑢 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}∀𝑣 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} (((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑢) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))‘𝑣) → 𝑢 = 𝑣))) |
| 131 | 84, 129, 130 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)):{𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}–1-1→(ℕ0 ↑m 𝐽)) |
| 132 | | df-f1 6491 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)):{𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}–1-1→(ℕ0 ↑m 𝐽) ↔ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)):{𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}⟶(ℕ0
↑m 𝐽) ∧
Fun ◡(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)))) |
| 133 | 132 | simprbi 496 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)):{𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}–1-1→(ℕ0 ↑m 𝐽) → Fun ◡(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))) |
| 134 | 131, 133 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → Fun ◡(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))) |
| 135 | 48, 17, 9, 18 | mplelsfi 21933 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 finSupp 0 ) |
| 136 | 135 | fsuppimpd 9260 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 supp 0 ) ∈
Fin) |
| 137 | | imafi 9206 |
. . . . . . . . 9
⊢ ((Fun
◡(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)) ∧ (𝐹 supp 0 ) ∈ Fin) →
(◡(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)) “ (𝐹 supp 0 )) ∈
Fin) |
| 138 | 134, 136,
137 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (◡(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽)) “ (𝐹 supp 0 )) ∈
Fin) |
| 139 | 83, 138 | eqeltrd 2833 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ∘ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝑥 ↾ 𝐽))) supp 0 ) ∈
Fin) |
| 140 | 80, 139 | eqeltrrd 2834 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝐹‘(𝑥 ↾ 𝐽))) supp 0 ) ∈
Fin) |
| 141 | | fconstmpt 5681 |
. . . . . . . . . 10
⊢ ((𝐷 ∖ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) × { 0 }) = (𝑥 ∈ (𝐷 ∖ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ↦ 0 ) |
| 142 | 141 | oveq1i 7362 |
. . . . . . . . 9
⊢ (((𝐷 ∖ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) × { 0 }) supp 0 ) = ((𝑥 ∈ (𝐷 ∖ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ↦ 0 ) supp 0 ) |
| 143 | | fczsupp0 8129 |
. . . . . . . . 9
⊢ (((𝐷 ∖ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) × { 0 }) supp 0 ) =
∅ |
| 144 | 142, 143 | eqtr3i 2758 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐷 ∖ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ↦ 0 ) supp 0 ) =
∅ |
| 145 | | 0fi 8971 |
. . . . . . . 8
⊢ ∅
∈ Fin |
| 146 | 144, 145 | eqeltri 2829 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐷 ∖ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ↦ 0 ) supp 0 ) ∈
Fin |
| 147 | 146 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (𝐷 ∖ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ↦ 0 ) supp 0 ) ∈
Fin) |
| 148 | 140, 147 | unfid 9088 |
. . . . 5
⊢ (𝜑 → (((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0} ↦ (𝐹‘(𝑥 ↾ 𝐽))) supp 0 ) ∪ ((𝑥 ∈ (𝐷 ∖ {𝑦 ∈ 𝐷 ∣ (𝑦‘𝐴) = 0}) ↦ 0 ) supp 0 )) ∈
Fin) |
| 149 | 47, 148 | eqeltrd 2833 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ if((𝑥‘𝐴) = 0, (𝐹‘(𝑥 ↾ 𝐽)), 0 )) supp 0 ) ∈
Fin) |
| 150 | 33, 34, 36, 149 | isfsuppd 9257 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝐴) = 0, (𝐹‘(𝑥 ↾ 𝐽)), 0 )) finSupp 0
) |
| 151 | 19, 150 | eqbrtrd 5115 |
. 2
⊢ (𝜑 → (((𝐼extendVars𝑅)‘𝐴)‘𝐹) finSupp 0 ) |
| 152 | | eqid 2733 |
. . 3
⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) |
| 153 | | extvfvcl.n |
. . 3
⊢ 𝑁 = (Base‘(𝐼 mPoly 𝑅)) |
| 154 | 152, 28, 30, 9, 153 | mplelbas 21929 |
. 2
⊢ ((((𝐼extendVars𝑅)‘𝐴)‘𝐹) ∈ 𝑁 ↔ ((((𝐼extendVars𝑅)‘𝐴)‘𝐹) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (((𝐼extendVars𝑅)‘𝐴)‘𝐹) finSupp 0 )) |
| 155 | 32, 151, 154 | sylanbrc 583 |
1
⊢ (𝜑 → (((𝐼extendVars𝑅)‘𝐴)‘𝐹) ∈ 𝑁) |