Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extvfvcl Structured version   Visualization version   GIF version

Theorem extvfvcl 33587
Description: Closure for the "variable extension" function evaluated for converting a given polynomial 𝐹 by adding a variable with index 𝐴. (Contributed by Thierry Arnoux, 25-Jan-2026.)
Hypotheses
Ref Expression
extvfvvcl.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
extvfvvcl.3 0 = (0g𝑅)
extvfvvcl.i (𝜑𝐼𝑉)
extvfvvcl.r (𝜑𝑅 ∈ Ring)
extvfvvcl.b 𝐵 = (Base‘𝑅)
extvfvvcl.j 𝐽 = (𝐼 ∖ {𝐴})
extvfvvcl.m 𝑀 = (Base‘(𝐽 mPoly 𝑅))
extvfvvcl.1 (𝜑𝐴𝐼)
extvfvvcl.f (𝜑𝐹𝑀)
extvfvcl.n 𝑁 = (Base‘(𝐼 mPoly 𝑅))
Assertion
Ref Expression
extvfvcl (𝜑 → (((𝐼extendVars𝑅)‘𝐴)‘𝐹) ∈ 𝑁)
Distinct variable groups:   𝐴,   ,𝐼   ,𝐽
Allowed substitution hints:   𝜑()   𝐵()   𝐷()   𝑅()   𝐹()   𝑀()   𝑁()   𝑉()   0 ()

Proof of Theorem extvfvcl
Dummy variables 𝑥 𝑦 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 extvfvvcl.b . . . . . 6 𝐵 = (Base‘𝑅)
21fvexi 6842 . . . . 5 𝐵 ∈ V
32a1i 11 . . . 4 (𝜑𝐵 ∈ V)
4 extvfvvcl.d . . . . . 6 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
5 ovex 7385 . . . . . 6 (ℕ0m 𝐼) ∈ V
64, 5rabex2 5281 . . . . 5 𝐷 ∈ V
76a1i 11 . . . 4 (𝜑𝐷 ∈ V)
8 fvexd 6843 . . . . . 6 ((𝜑𝑥𝐷) → (𝐹‘(𝑥𝐽)) ∈ V)
9 extvfvvcl.3 . . . . . . . 8 0 = (0g𝑅)
109fvexi 6842 . . . . . . 7 0 ∈ V
1110a1i 11 . . . . . 6 ((𝜑𝑥𝐷) → 0 ∈ V)
128, 11ifcld 4521 . . . . 5 ((𝜑𝑥𝐷) → if((𝑥𝐴) = 0, (𝐹‘(𝑥𝐽)), 0 ) ∈ V)
13 extvfvvcl.i . . . . . 6 (𝜑𝐼𝑉)
14 extvfvvcl.r . . . . . 6 (𝜑𝑅 ∈ Ring)
15 extvfvvcl.1 . . . . . 6 (𝜑𝐴𝐼)
16 extvfvvcl.j . . . . . 6 𝐽 = (𝐼 ∖ {𝐴})
17 extvfvvcl.m . . . . . 6 𝑀 = (Base‘(𝐽 mPoly 𝑅))
18 extvfvvcl.f . . . . . 6 (𝜑𝐹𝑀)
194, 9, 13, 14, 15, 16, 17, 18extvfv 33584 . . . . 5 (𝜑 → (((𝐼extendVars𝑅)‘𝐴)‘𝐹) = (𝑥𝐷 ↦ if((𝑥𝐴) = 0, (𝐹‘(𝑥𝐽)), 0 )))
2013adantr 480 . . . . . 6 ((𝜑𝑥𝐷) → 𝐼𝑉)
2114adantr 480 . . . . . 6 ((𝜑𝑥𝐷) → 𝑅 ∈ Ring)
2215adantr 480 . . . . . 6 ((𝜑𝑥𝐷) → 𝐴𝐼)
2318adantr 480 . . . . . 6 ((𝜑𝑥𝐷) → 𝐹𝑀)
24 simpr 484 . . . . . 6 ((𝜑𝑥𝐷) → 𝑥𝐷)
254, 9, 20, 21, 1, 16, 17, 22, 23, 24extvfvvcl 33586 . . . . 5 ((𝜑𝑥𝐷) → ((((𝐼extendVars𝑅)‘𝐴)‘𝐹)‘𝑥) ∈ 𝐵)
2612, 19, 25fmpt2d 7063 . . . 4 (𝜑 → (((𝐼extendVars𝑅)‘𝐴)‘𝐹):𝐷𝐵)
273, 7, 26elmapdd 8771 . . 3 (𝜑 → (((𝐼extendVars𝑅)‘𝐴)‘𝐹) ∈ (𝐵m 𝐷))
28 eqid 2733 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
294psrbasfsupp 33579 . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
30 eqid 2733 . . . 4 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
3128, 1, 29, 30, 13psrbas 21872 . . 3 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (𝐵m 𝐷))
3227, 31eleqtrrd 2836 . 2 (𝜑 → (((𝐼extendVars𝑅)‘𝐴)‘𝐹) ∈ (Base‘(𝐼 mPwSer 𝑅)))
337mptexd 7164 . . . 4 (𝜑 → (𝑥𝐷 ↦ if((𝑥𝐴) = 0, (𝐹‘(𝑥𝐽)), 0 )) ∈ V)
3410a1i 11 . . . 4 (𝜑0 ∈ V)
3512fmpttd 7054 . . . . 5 (𝜑 → (𝑥𝐷 ↦ if((𝑥𝐴) = 0, (𝐹‘(𝑥𝐽)), 0 )):𝐷⟶V)
3635ffund 6660 . . . 4 (𝜑 → Fun (𝑥𝐷 ↦ if((𝑥𝐴) = 0, (𝐹‘(𝑥𝐽)), 0 )))
37 fveq1 6827 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦𝐴) = (𝑥𝐴))
3837eqeq1d 2735 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑦𝐴) = 0 ↔ (𝑥𝐴) = 0))
3938cbvrabv 3406 . . . . . . . 8 {𝑦𝐷 ∣ (𝑦𝐴) = 0} = {𝑥𝐷 ∣ (𝑥𝐴) = 0}
4039partfun2 32661 . . . . . . 7 (𝑥𝐷 ↦ if((𝑥𝐴) = 0, (𝐹‘(𝑥𝐽)), 0 )) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝐹‘(𝑥𝐽))) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ↦ 0 ))
4140oveq1i 7362 . . . . . 6 ((𝑥𝐷 ↦ if((𝑥𝐴) = 0, (𝐹‘(𝑥𝐽)), 0 )) supp 0 ) = (((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝐹‘(𝑥𝐽))) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ↦ 0 )) supp 0 )
4239, 7rabexd 5280 . . . . . . . 8 (𝜑 → {𝑦𝐷 ∣ (𝑦𝐴) = 0} ∈ V)
4342mptexd 7164 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝐹‘(𝑥𝐽))) ∈ V)
447difexd 5271 . . . . . . . 8 (𝜑 → (𝐷 ∖ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∈ V)
4544mptexd 7164 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐷 ∖ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ↦ 0 ) ∈ V)
4643, 45, 34suppun2 32669 . . . . . 6 (𝜑 → (((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝐹‘(𝑥𝐽))) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ↦ 0 )) supp 0 ) = (((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝐹‘(𝑥𝐽))) supp 0 ) ∪ ((𝑥 ∈ (𝐷 ∖ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ↦ 0 ) supp 0 )))
4741, 46eqtrid 2780 . . . . 5 (𝜑 → ((𝑥𝐷 ↦ if((𝑥𝐴) = 0, (𝐹‘(𝑥𝐽)), 0 )) supp 0 ) = (((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝐹‘(𝑥𝐽))) supp 0 ) ∪ ((𝑥 ∈ (𝐷 ∖ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ↦ 0 ) supp 0 )))
48 eqid 2733 . . . . . . . . . 10 (𝐽 mPoly 𝑅) = (𝐽 mPoly 𝑅)
49 eqid 2733 . . . . . . . . . . 11 { ∈ (ℕ0m 𝐽) ∣ finSupp 0} = { ∈ (ℕ0m 𝐽) ∣ finSupp 0}
5049psrbasfsupp 33579 . . . . . . . . . 10 { ∈ (ℕ0m 𝐽) ∣ finSupp 0} = { ∈ (ℕ0m 𝐽) ∣ ( “ ℕ) ∈ Fin}
5148, 1, 17, 50, 18mplelf 21936 . . . . . . . . 9 (𝜑𝐹:{ ∈ (ℕ0m 𝐽) ∣ finSupp 0}⟶𝐵)
52 breq1 5096 . . . . . . . . . 10 ( = (𝑥𝐽) → ( finSupp 0 ↔ (𝑥𝐽) finSupp 0))
53 nn0ex 12394 . . . . . . . . . . . 12 0 ∈ V
5453a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) → ℕ0 ∈ V)
5513difexd 5271 . . . . . . . . . . . . 13 (𝜑 → (𝐼 ∖ {𝐴}) ∈ V)
5616, 55eqeltrid 2837 . . . . . . . . . . . 12 (𝜑𝐽 ∈ V)
5756adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) → 𝐽 ∈ V)
5813adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) → 𝐼𝑉)
59 ssrab2 4029 . . . . . . . . . . . . . . 15 {𝑦𝐷 ∣ (𝑦𝐴) = 0} ⊆ 𝐷
60 ssrab2 4029 . . . . . . . . . . . . . . . . 17 { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ⊆ (ℕ0m 𝐼)
6160a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ⊆ (ℕ0m 𝐼))
624, 61eqsstrid 3969 . . . . . . . . . . . . . . 15 (𝜑𝐷 ⊆ (ℕ0m 𝐼))
6359, 62sstrid 3942 . . . . . . . . . . . . . 14 (𝜑 → {𝑦𝐷 ∣ (𝑦𝐴) = 0} ⊆ (ℕ0m 𝐼))
6463sselda 3930 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) → 𝑥 ∈ (ℕ0m 𝐼))
6558, 54, 64elmaprd 32665 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) → 𝑥:𝐼⟶ℕ0)
66 difssd 4086 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 ∖ {𝐴}) ⊆ 𝐼)
6716, 66eqsstrid 3969 . . . . . . . . . . . . 13 (𝜑𝐽𝐼)
6867adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) → 𝐽𝐼)
6965, 68fssresd 6695 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) → (𝑥𝐽):𝐽⟶ℕ0)
7054, 57, 69elmapdd 8771 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) → (𝑥𝐽) ∈ (ℕ0m 𝐽))
7159a1i 11 . . . . . . . . . . . . 13 (𝜑 → {𝑦𝐷 ∣ (𝑦𝐴) = 0} ⊆ 𝐷)
7271sselda 3930 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) → 𝑥𝐷)
7329psrbagfsupp 21858 . . . . . . . . . . . 12 (𝑥𝐷𝑥 finSupp 0)
7472, 73syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) → 𝑥 finSupp 0)
75 c0ex 11113 . . . . . . . . . . . 12 0 ∈ V
7675a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) → 0 ∈ V)
7774, 76fsuppres 9284 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) → (𝑥𝐽) finSupp 0)
7852, 70, 77elrabd 3645 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) → (𝑥𝐽) ∈ { ∈ (ℕ0m 𝐽) ∣ finSupp 0})
7951, 78cofmpt 7071 . . . . . . . 8 (𝜑 → (𝐹 ∘ (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))) = (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝐹‘(𝑥𝐽))))
8079oveq1d 7367 . . . . . . 7 (𝜑 → ((𝐹 ∘ (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))) supp 0 ) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝐹‘(𝑥𝐽))) supp 0 ))
8142mptexd 7164 . . . . . . . . 9 (𝜑 → (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)) ∈ V)
82 suppco 8142 . . . . . . . . 9 ((𝐹𝑀 ∧ (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)) ∈ V) → ((𝐹 ∘ (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))) supp 0 ) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)) “ (𝐹 supp 0 )))
8318, 81, 82syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐹 ∘ (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))) supp 0 ) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)) “ (𝐹 supp 0 )))
8470fmpttd 7054 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)):{𝑦𝐷 ∣ (𝑦𝐴) = 0}⟶(ℕ0m 𝐽))
85 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣))
86 eqid 2733 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)) = (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))
87 reseq1 5926 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑢 → (𝑥𝐽) = (𝑢𝐽))
88 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0})
8988resexd 5981 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → (𝑢𝐽) ∈ V)
9086, 87, 88, 89fvmptd3 6958 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = (𝑢𝐽))
91 reseq1 5926 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑣 → (𝑥𝐽) = (𝑣𝐽))
92 simplr 768 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0})
9392resexd 5981 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → (𝑣𝐽) ∈ V)
9486, 91, 92, 93fvmptd3 6958 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣) = (𝑣𝐽))
9585, 90, 943eqtr3d 2776 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → (𝑢𝐽) = (𝑣𝐽))
9616a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝐽 = (𝐼 ∖ {𝐴}))
9796reseq2d 5932 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → (𝑢𝐽) = (𝑢 ↾ (𝐼 ∖ {𝐴})))
9896reseq2d 5932 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → (𝑣𝐽) = (𝑣 ↾ (𝐼 ∖ {𝐴})))
9995, 97, 983eqtr3d 2776 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → (𝑢 ↾ (𝐼 ∖ {𝐴})) = (𝑣 ↾ (𝐼 ∖ {𝐴})))
100 fveq1 6827 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑢 → (𝑦𝐴) = (𝑢𝐴))
101100eqeq1d 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑢 → ((𝑦𝐴) = 0 ↔ (𝑢𝐴) = 0))
102101, 88elrabrd 32480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → (𝑢𝐴) = 0)
103 fveq1 6827 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑣 → (𝑦𝐴) = (𝑣𝐴))
104103eqeq1d 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑣 → ((𝑦𝐴) = 0 ↔ (𝑣𝐴) = 0))
105104, 92elrabrd 32480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → (𝑣𝐴) = 0)
106102, 105eqtr4d 2771 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → (𝑢𝐴) = (𝑣𝐴))
107106opeq2d 4831 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → ⟨𝐴, (𝑢𝐴)⟩ = ⟨𝐴, (𝑣𝐴)⟩)
108107sneqd 4587 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → {⟨𝐴, (𝑢𝐴)⟩} = {⟨𝐴, (𝑣𝐴)⟩})
10999, 108uneq12d 4118 . . . . . . . . . . . . . . 15 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → ((𝑢 ↾ (𝐼 ∖ {𝐴})) ∪ {⟨𝐴, (𝑢𝐴)⟩}) = ((𝑣 ↾ (𝐼 ∖ {𝐴})) ∪ {⟨𝐴, (𝑣𝐴)⟩}))
11013ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝐼𝑉)
11153a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → ℕ0 ∈ V)
11262ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝐷 ⊆ (ℕ0m 𝐼))
11359, 88sselid 3928 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝑢𝐷)
114112, 113sseldd 3931 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝑢 ∈ (ℕ0m 𝐼))
115110, 111, 114elmaprd 32665 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝑢:𝐼⟶ℕ0)
116115ffnd 6657 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝑢 Fn 𝐼)
11715ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝐴𝐼)
118 fnsnsplit 7124 . . . . . . . . . . . . . . . 16 ((𝑢 Fn 𝐼𝐴𝐼) → 𝑢 = ((𝑢 ↾ (𝐼 ∖ {𝐴})) ∪ {⟨𝐴, (𝑢𝐴)⟩}))
119116, 117, 118syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝑢 = ((𝑢 ↾ (𝐼 ∖ {𝐴})) ∪ {⟨𝐴, (𝑢𝐴)⟩}))
12059, 92sselid 3928 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝑣𝐷)
121112, 120sseldd 3931 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝑣 ∈ (ℕ0m 𝐼))
122110, 111, 121elmaprd 32665 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝑣:𝐼⟶ℕ0)
123122ffnd 6657 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝑣 Fn 𝐼)
124 fnsnsplit 7124 . . . . . . . . . . . . . . . 16 ((𝑣 Fn 𝐼𝐴𝐼) → 𝑣 = ((𝑣 ↾ (𝐼 ∖ {𝐴})) ∪ {⟨𝐴, (𝑣𝐴)⟩}))
125123, 117, 124syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝑣 = ((𝑣 ↾ (𝐼 ∖ {𝐴})) ∪ {⟨𝐴, (𝑣𝐴)⟩}))
126109, 119, 1253eqtr4d 2778 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣)) → 𝑢 = 𝑣)
127126ex 412 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) → (((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣) → 𝑢 = 𝑣))
128127anasss 466 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ∧ 𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0})) → (((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣) → 𝑢 = 𝑣))
129128ralrimivva 3176 . . . . . . . . . . 11 (𝜑 → ∀𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}∀𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} (((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣) → 𝑢 = 𝑣))
130 dff13 7194 . . . . . . . . . . 11 ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)):{𝑦𝐷 ∣ (𝑦𝐴) = 0}–1-1→(ℕ0m 𝐽) ↔ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)):{𝑦𝐷 ∣ (𝑦𝐴) = 0}⟶(ℕ0m 𝐽) ∧ ∀𝑢 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0}∀𝑣 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} (((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑢) = ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))‘𝑣) → 𝑢 = 𝑣)))
13184, 129, 130sylanbrc 583 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)):{𝑦𝐷 ∣ (𝑦𝐴) = 0}–1-1→(ℕ0m 𝐽))
132 df-f1 6491 . . . . . . . . . . 11 ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)):{𝑦𝐷 ∣ (𝑦𝐴) = 0}–1-1→(ℕ0m 𝐽) ↔ ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)):{𝑦𝐷 ∣ (𝑦𝐴) = 0}⟶(ℕ0m 𝐽) ∧ Fun (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))))
133132simprbi 496 . . . . . . . . . 10 ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)):{𝑦𝐷 ∣ (𝑦𝐴) = 0}–1-1→(ℕ0m 𝐽) → Fun (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)))
134131, 133syl 17 . . . . . . . . 9 (𝜑 → Fun (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)))
13548, 17, 9, 18mplelsfi 21933 . . . . . . . . . 10 (𝜑𝐹 finSupp 0 )
136135fsuppimpd 9260 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
137 imafi 9206 . . . . . . . . 9 ((Fun (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)) ∧ (𝐹 supp 0 ) ∈ Fin) → ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)) “ (𝐹 supp 0 )) ∈ Fin)
138134, 136, 137syl2anc 584 . . . . . . . 8 (𝜑 → ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽)) “ (𝐹 supp 0 )) ∈ Fin)
13983, 138eqeltrd 2833 . . . . . . 7 (𝜑 → ((𝐹 ∘ (𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝑥𝐽))) supp 0 ) ∈ Fin)
14080, 139eqeltrrd 2834 . . . . . 6 (𝜑 → ((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝐹‘(𝑥𝐽))) supp 0 ) ∈ Fin)
141 fconstmpt 5681 . . . . . . . . . 10 ((𝐷 ∖ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) × { 0 }) = (𝑥 ∈ (𝐷 ∖ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ↦ 0 )
142141oveq1i 7362 . . . . . . . . 9 (((𝐷 ∖ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) × { 0 }) supp 0 ) = ((𝑥 ∈ (𝐷 ∖ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ↦ 0 ) supp 0 )
143 fczsupp0 8129 . . . . . . . . 9 (((𝐷 ∖ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) × { 0 }) supp 0 ) = ∅
144142, 143eqtr3i 2758 . . . . . . . 8 ((𝑥 ∈ (𝐷 ∖ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ↦ 0 ) supp 0 ) = ∅
145 0fi 8971 . . . . . . . 8 ∅ ∈ Fin
146144, 145eqeltri 2829 . . . . . . 7 ((𝑥 ∈ (𝐷 ∖ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ↦ 0 ) supp 0 ) ∈ Fin
147146a1i 11 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐷 ∖ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ↦ 0 ) supp 0 ) ∈ Fin)
148140, 147unfid 9088 . . . . 5 (𝜑 → (((𝑥 ∈ {𝑦𝐷 ∣ (𝑦𝐴) = 0} ↦ (𝐹‘(𝑥𝐽))) supp 0 ) ∪ ((𝑥 ∈ (𝐷 ∖ {𝑦𝐷 ∣ (𝑦𝐴) = 0}) ↦ 0 ) supp 0 )) ∈ Fin)
14947, 148eqeltrd 2833 . . . 4 (𝜑 → ((𝑥𝐷 ↦ if((𝑥𝐴) = 0, (𝐹‘(𝑥𝐽)), 0 )) supp 0 ) ∈ Fin)
15033, 34, 36, 149isfsuppd 9257 . . 3 (𝜑 → (𝑥𝐷 ↦ if((𝑥𝐴) = 0, (𝐹‘(𝑥𝐽)), 0 )) finSupp 0 )
15119, 150eqbrtrd 5115 . 2 (𝜑 → (((𝐼extendVars𝑅)‘𝐴)‘𝐹) finSupp 0 )
152 eqid 2733 . . 3 (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅)
153 extvfvcl.n . . 3 𝑁 = (Base‘(𝐼 mPoly 𝑅))
154152, 28, 30, 9, 153mplelbas 21929 . 2 ((((𝐼extendVars𝑅)‘𝐴)‘𝐹) ∈ 𝑁 ↔ ((((𝐼extendVars𝑅)‘𝐴)‘𝐹) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (((𝐼extendVars𝑅)‘𝐴)‘𝐹) finSupp 0 ))
15532, 151, 154sylanbrc 583 1 (𝜑 → (((𝐼extendVars𝑅)‘𝐴)‘𝐹) ∈ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  Vcvv 3437  cdif 3895  cun 3896  wss 3898  c0 4282  ifcif 4474  {csn 4575  cop 4581   class class class wbr 5093  cmpt 5174   × cxp 5617  ccnv 5618  cres 5621  cima 5622  ccom 5623  Fun wfun 6480   Fn wfn 6481  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7352   supp csupp 8096  m cmap 8756  Fincfn 8875   finSupp cfsupp 9252  0cc0 11013  0cn0 12388  Basecbs 17122  0gc0g 17345  Ringcrg 20153   mPwSer cmps 21843   mPoly cmpl 21845  extendVarscextv 33580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-tset 17182  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-ring 20155  df-psr 21848  df-mpl 21850  df-extv 33581
This theorem is referenced by:  extvfvalf  33588
  Copyright terms: Public domain W3C validator