| Step | Hyp | Ref
| Expression |
| 1 | | esplyfval3.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 2 | | eqid 2733 |
. . . . . . . . 9
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
| 3 | 2 | zrhrhm 21450 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(ℤRHom‘𝑅)
∈ (ℤring RingHom 𝑅)) |
| 4 | | zringbas 21392 |
. . . . . . . . 9
⊢ ℤ =
(Base‘ℤring) |
| 5 | | eqid 2733 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 6 | 4, 5 | rhmf 20404 |
. . . . . . . 8
⊢
((ℤRHom‘𝑅) ∈ (ℤring RingHom
𝑅) →
(ℤRHom‘𝑅):ℤ⟶(Base‘𝑅)) |
| 7 | 1, 3, 6 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅)) |
| 8 | 7 | ffnd 6657 |
. . . . . 6
⊢ (𝜑 → (ℤRHom‘𝑅) Fn ℤ) |
| 9 | | esplyfval3.d |
. . . . . . . . . 10
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0} |
| 10 | | ovex 7385 |
. . . . . . . . . 10
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 11 | 9, 10 | rabex2 5281 |
. . . . . . . . 9
⊢ 𝐷 ∈ V |
| 12 | 11 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) → 𝐷 ∈ V) |
| 13 | | esplyfval3.i |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) → 𝐼 ∈ Fin) |
| 15 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) → 𝑅 ∈ Ring) |
| 16 | | esplyfval3.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 17 | 16 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) → 𝐾 ∈
ℕ0) |
| 18 | 9, 14, 15, 17 | esplylem 33606 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) →
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾}) ⊆ 𝐷) |
| 19 | | indf 32841 |
. . . . . . . 8
⊢ ((𝐷 ∈ V ∧
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾}) ⊆ 𝐷) → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1}) |
| 20 | 12, 18, 19 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) →
((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1}) |
| 21 | | 0zd 12487 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) → 0 ∈
ℤ) |
| 22 | | 1zzd 12509 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) → 1 ∈
ℤ) |
| 23 | 21, 22 | prssd 4773 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) → {0, 1} ⊆
ℤ) |
| 24 | 20, 23 | fssd 6673 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) →
((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶ℤ) |
| 25 | | fnfco 6693 |
. . . . . 6
⊢
(((ℤRHom‘𝑅) Fn ℤ ∧ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶ℤ) →
((ℤRHom‘𝑅)
∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) Fn 𝐷) |
| 26 | 8, 24, 25 | syl2an2r 685 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) →
((ℤRHom‘𝑅)
∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) Fn 𝐷) |
| 27 | 9, 14, 15, 17 | esplyfval 33604 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) → ((𝐼eSymPoly𝑅)‘𝐾) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))) |
| 28 | 27 | fneq1d 6579 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) → (((𝐼eSymPoly𝑅)‘𝐾) Fn 𝐷 ↔ ((ℤRHom‘𝑅) ∘
((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) Fn 𝐷)) |
| 29 | 26, 28 | mpbird 257 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) → ((𝐼eSymPoly𝑅)‘𝐾) Fn 𝐷) |
| 30 | | dffn5 6886 |
. . . 4
⊢ (((𝐼eSymPoly𝑅)‘𝐾) Fn 𝐷 ↔ ((𝐼eSymPoly𝑅)‘𝐾) = (𝑓 ∈ 𝐷 ↦ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑓))) |
| 31 | 29, 30 | sylib 218 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) → ((𝐼eSymPoly𝑅)‘𝐾) = (𝑓 ∈ 𝐷 ↦ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑓))) |
| 32 | | eqeq2 2745 |
. . . . . 6
⊢
(if((♯‘(𝑓 supp 0)) = 𝐾, 1 , 0 ) = if(ran 𝑓 ⊆ {0, 1},
if((♯‘(𝑓 supp
0)) = 𝐾, 1 , 0 ), 0 ) → ((((𝐼eSymPoly𝑅)‘𝐾)‘𝑓) = if((♯‘(𝑓 supp 0)) = 𝐾, 1 , 0 ) ↔ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑓) = if(ran 𝑓 ⊆ {0, 1}, if((♯‘(𝑓 supp 0)) = 𝐾, 1 , 0 ), 0 ))) |
| 33 | | eqeq2 2745 |
. . . . . 6
⊢ ( 0 = if(ran
𝑓 ⊆ {0, 1},
if((♯‘(𝑓 supp
0)) = 𝐾, 1 , 0 ), 0 ) → ((((𝐼eSymPoly𝑅)‘𝐾)‘𝑓) = 0 ↔ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑓) = if(ran 𝑓 ⊆ {0, 1}, if((♯‘(𝑓 supp 0)) = 𝐾, 1 , 0 ), 0 ))) |
| 34 | 14 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → 𝐼 ∈ Fin) |
| 35 | 34 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ran 𝑓 ⊆ {0, 1}) → 𝐼 ∈ Fin) |
| 36 | 15 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ran 𝑓 ⊆ {0, 1}) → 𝑅 ∈ Ring) |
| 37 | | simpllr 775 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ran 𝑓 ⊆ {0, 1}) → 𝐾 ∈ (0...(♯‘𝐼))) |
| 38 | | simplr 768 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ran 𝑓 ⊆ {0, 1}) → 𝑓 ∈ 𝐷) |
| 39 | | esplyfval3.1 |
. . . . . . 7
⊢ 0 =
(0g‘𝑅) |
| 40 | | esplyfval3.2 |
. . . . . . 7
⊢ 1 =
(1r‘𝑅) |
| 41 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ran 𝑓 ⊆ {0, 1}) → ran 𝑓 ⊆ {0,
1}) |
| 42 | 9, 35, 36, 37, 38, 39, 40, 41 | esplyfv1 33609 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ran 𝑓 ⊆ {0, 1}) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝑓) = if((♯‘(𝑓 supp 0)) = 𝐾, 1 , 0 )) |
| 43 | 27 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ¬ ran 𝑓 ⊆ {0, 1}) → ((𝐼eSymPoly𝑅)‘𝐾) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))) |
| 44 | 43 | fveq1d 6830 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ¬ ran 𝑓 ⊆ {0, 1}) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝑓) = (((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))‘𝑓)) |
| 45 | 24 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ¬ ran 𝑓 ⊆ {0, 1}) →
((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶ℤ) |
| 46 | | simplr 768 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ¬ ran 𝑓 ⊆ {0, 1}) → 𝑓 ∈ 𝐷) |
| 47 | 45, 46 | fvco3d 6928 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ¬ ran 𝑓 ⊆ {0, 1}) →
(((ℤRHom‘𝑅)
∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))‘𝑓) = ((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑓))) |
| 48 | 18 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ¬ ran 𝑓 ⊆ {0, 1}) →
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾}) ⊆ 𝐷) |
| 49 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝐾 ∈
(0...(♯‘𝐼)))
∧ 𝑓 ∈ 𝐷) ∧ 𝑓 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝑓) → ((𝟭‘𝐼)‘𝑑) = 𝑓) |
| 50 | 34 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝐾 ∈
(0...(♯‘𝐼)))
∧ 𝑓 ∈ 𝐷) ∧ 𝑓 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝑓) → 𝐼 ∈ Fin) |
| 51 | | ssrab2 4029 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼 |
| 52 | 51 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ 𝑓 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼) |
| 53 | 52 | sselda 3930 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝐾 ∈
(0...(♯‘𝐼)))
∧ 𝑓 ∈ 𝐷) ∧ 𝑓 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) → 𝑑 ∈ 𝒫 𝐼) |
| 54 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝐾 ∈
(0...(♯‘𝐼)))
∧ 𝑓 ∈ 𝐷) ∧ 𝑓 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝑓) → 𝑑 ∈ 𝒫 𝐼) |
| 55 | 54 | elpwid 4558 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝐾 ∈
(0...(♯‘𝐼)))
∧ 𝑓 ∈ 𝐷) ∧ 𝑓 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝑓) → 𝑑 ⊆ 𝐼) |
| 56 | | indf 32841 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ Fin ∧ 𝑑 ⊆ 𝐼) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1}) |
| 57 | 50, 55, 56 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝐾 ∈
(0...(♯‘𝐼)))
∧ 𝑓 ∈ 𝐷) ∧ 𝑓 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝑓) → ((𝟭‘𝐼)‘𝑑):𝐼⟶{0, 1}) |
| 58 | 49, 57 | feq1dd 6639 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝐾 ∈
(0...(♯‘𝐼)))
∧ 𝑓 ∈ 𝐷) ∧ 𝑓 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∧ 𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∧ ((𝟭‘𝐼)‘𝑑) = 𝑓) → 𝑓:𝐼⟶{0, 1}) |
| 59 | | indf1o 32852 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐼 ∈ Fin →
(𝟭‘𝐼):𝒫 𝐼–1-1-onto→({0,
1} ↑m 𝐼)) |
| 60 | | f1of 6768 |
. . . . . . . . . . . . . . . . . 18
⊢
((𝟭‘𝐼):𝒫 𝐼–1-1-onto→({0,
1} ↑m 𝐼)
→ (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼)) |
| 61 | 34, 59, 60 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼)) |
| 62 | 61 | ffnd 6657 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → (𝟭‘𝐼) Fn 𝒫 𝐼) |
| 63 | 51 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼) |
| 64 | 62, 63 | fvelimabd 6901 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → (𝑓 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ↔ ∃𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ((𝟭‘𝐼)‘𝑑) = 𝑓)) |
| 65 | 64 | biimpa 476 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ 𝑓 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → ∃𝑑 ∈ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ((𝟭‘𝐼)‘𝑑) = 𝑓) |
| 66 | 58, 65 | r19.29a 3141 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ 𝑓 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → 𝑓:𝐼⟶{0, 1}) |
| 67 | 66 | frnd 6664 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ 𝑓 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) → ran 𝑓 ⊆ {0, 1}) |
| 68 | 67 | stoic1a 1773 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ¬ ran 𝑓 ⊆ {0, 1}) → ¬ 𝑓 ∈ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) |
| 69 | 46, 68 | eldifd 3909 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ¬ ran 𝑓 ⊆ {0, 1}) → 𝑓 ∈ (𝐷 ∖ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) |
| 70 | | ind0 32844 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ V ∧
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾}) ⊆ 𝐷 ∧ 𝑓 ∈ (𝐷 ∖ ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) → (((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑓) = 0) |
| 71 | 11, 48, 69, 70 | mp3an2i 1468 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ¬ ran 𝑓 ⊆ {0, 1}) →
(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑓) = 0) |
| 72 | 71 | fveq2d 6832 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ¬ ran 𝑓 ⊆ {0, 1}) →
((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑓)) = ((ℤRHom‘𝑅)‘0)) |
| 73 | 2, 39 | zrh0 21452 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
((ℤRHom‘𝑅)‘0) = 0 ) |
| 74 | 1, 73 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((ℤRHom‘𝑅)‘0) = 0 ) |
| 75 | 74 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ¬ ran 𝑓 ⊆ {0, 1}) →
((ℤRHom‘𝑅)‘0) = 0 ) |
| 76 | 72, 75 | eqtrd 2768 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ¬ ran 𝑓 ⊆ {0, 1}) →
((ℤRHom‘𝑅)‘(((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))‘𝑓)) = 0 ) |
| 77 | 44, 47, 76 | 3eqtrd 2772 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) ∧ ¬ ran 𝑓 ⊆ {0, 1}) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝑓) = 0 ) |
| 78 | 32, 33, 42, 77 | ifbothda 4513 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝑓) = if(ran 𝑓 ⊆ {0, 1}, if((♯‘(𝑓 supp 0)) = 𝐾, 1 , 0 ), 0 )) |
| 79 | | ifan 4528 |
. . . . 5
⊢ if((ran
𝑓 ⊆ {0, 1} ∧
(♯‘(𝑓 supp 0))
= 𝐾), 1 , 0 ) = if(ran 𝑓 ⊆ {0, 1},
if((♯‘(𝑓 supp
0)) = 𝐾, 1 , 0 ), 0 ) |
| 80 | 78, 79 | eqtr4di 2786 |
. . . 4
⊢ (((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → (((𝐼eSymPoly𝑅)‘𝐾)‘𝑓) = if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), 1 , 0 )) |
| 81 | 80 | mpteq2dva 5186 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) → (𝑓 ∈ 𝐷 ↦ (((𝐼eSymPoly𝑅)‘𝐾)‘𝑓)) = (𝑓 ∈ 𝐷 ↦ if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), 1 , 0 ))) |
| 82 | 31, 81 | eqtrd 2768 |
. 2
⊢ ((𝜑 ∧ 𝐾 ∈ (0...(♯‘𝐼))) → ((𝐼eSymPoly𝑅)‘𝐾) = (𝑓 ∈ 𝐷 ↦ if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), 1 , 0 ))) |
| 83 | | eqid 2733 |
. . . . 5
⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) |
| 84 | 9 | psrbasfsupp 33579 |
. . . . 5
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 85 | | eqid 2733 |
. . . . 5
⊢
(0g‘(𝐼 mPoly 𝑅)) = (0g‘(𝐼 mPoly 𝑅)) |
| 86 | 1 | ringgrpd 20162 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 87 | 83, 84, 39, 85, 13, 86 | mpl0 21944 |
. . . 4
⊢ (𝜑 →
(0g‘(𝐼
mPoly 𝑅)) = (𝐷 × { 0 })) |
| 88 | 87 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) →
(0g‘(𝐼
mPoly 𝑅)) = (𝐷 × { 0 })) |
| 89 | 13 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) → 𝐼 ∈ Fin) |
| 90 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) → 𝑅 ∈ Ring) |
| 91 | 16 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) → 𝐾 ∈
ℕ0) |
| 92 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) → ¬ 𝐾 ∈
(0...(♯‘𝐼))) |
| 93 | 91, 92 | eldifd 3909 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) → 𝐾 ∈ (ℕ0 ∖
(0...(♯‘𝐼)))) |
| 94 | 9, 89, 90, 93, 85 | esplyfval2 33605 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) → ((𝐼eSymPoly𝑅)‘𝐾) = (0g‘(𝐼 mPoly 𝑅))) |
| 95 | | breq1 5096 |
. . . . . . . . . . . . . 14
⊢ (ℎ = 𝑓 → (ℎ finSupp 0 ↔ 𝑓 finSupp 0)) |
| 96 | 9 | eleq2i 2825 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ 𝐷 ↔ 𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 97 | 96 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ 𝐷 → 𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 98 | 97 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → 𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 99 | 95, 98 | elrabrd 32480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → 𝑓 finSupp 0) |
| 100 | 99 | fsuppimpd 9260 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (𝑓 supp 0) ∈ Fin) |
| 101 | | hashcl 14265 |
. . . . . . . . . . . 12
⊢ ((𝑓 supp 0) ∈ Fin →
(♯‘(𝑓 supp 0))
∈ ℕ0) |
| 102 | 100, 101 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (♯‘(𝑓 supp 0)) ∈
ℕ0) |
| 103 | 102 | nn0red 12450 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (♯‘(𝑓 supp 0)) ∈ ℝ) |
| 104 | 103 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → (♯‘(𝑓 supp 0)) ∈ ℝ) |
| 105 | | hashcl 14265 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ Fin →
(♯‘𝐼) ∈
ℕ0) |
| 106 | 13, 105 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝐼) ∈
ℕ0) |
| 107 | 106 | nn0red 12450 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐼) ∈
ℝ) |
| 108 | 107 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → (♯‘𝐼) ∈ ℝ) |
| 109 | 16 | nn0red 12450 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 110 | 109 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → 𝐾 ∈ ℝ) |
| 111 | | suppssdm 8113 |
. . . . . . . . . . . . 13
⊢ (𝑓 supp 0) ⊆ dom 𝑓 |
| 112 | 13 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → 𝐼 ∈ Fin) |
| 113 | | nn0ex 12394 |
. . . . . . . . . . . . . . 15
⊢
ℕ0 ∈ V |
| 114 | 113 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → ℕ0 ∈
V) |
| 115 | 9 | ssrab3 4031 |
. . . . . . . . . . . . . . . 16
⊢ 𝐷 ⊆ (ℕ0
↑m 𝐼) |
| 116 | 115 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐷 ⊆ (ℕ0
↑m 𝐼)) |
| 117 | 116 | sselda 3930 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → 𝑓 ∈ (ℕ0
↑m 𝐼)) |
| 118 | 112, 114,
117 | elmaprd 32665 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → 𝑓:𝐼⟶ℕ0) |
| 119 | 111, 118 | fssdm 6675 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (𝑓 supp 0) ⊆ 𝐼) |
| 120 | | hashss 14318 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ Fin ∧ (𝑓 supp 0) ⊆ 𝐼) → (♯‘(𝑓 supp 0)) ≤
(♯‘𝐼)) |
| 121 | 13, 119, 120 | syl2an2r 685 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (♯‘(𝑓 supp 0)) ≤ (♯‘𝐼)) |
| 122 | 121 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → (♯‘(𝑓 supp 0)) ≤ (♯‘𝐼)) |
| 123 | 106 | nn0zd 12500 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝐼) ∈
ℤ) |
| 124 | 123 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → (♯‘𝐼) ∈ ℤ) |
| 125 | | nn0diffz0 32781 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐼)
∈ ℕ0 → (ℕ0 ∖
(0...(♯‘𝐼))) =
(ℤ≥‘((♯‘𝐼) + 1))) |
| 126 | 89, 105, 125 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) → (ℕ0
∖ (0...(♯‘𝐼))) =
(ℤ≥‘((♯‘𝐼) + 1))) |
| 127 | 93, 126 | eleqtrd 2835 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) → 𝐾 ∈
(ℤ≥‘((♯‘𝐼) + 1))) |
| 128 | 127 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → 𝐾 ∈
(ℤ≥‘((♯‘𝐼) + 1))) |
| 129 | | eluzp1l 12765 |
. . . . . . . . . . 11
⊢
(((♯‘𝐼)
∈ ℤ ∧ 𝐾
∈ (ℤ≥‘((♯‘𝐼) + 1))) → (♯‘𝐼) < 𝐾) |
| 130 | 124, 128,
129 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → (♯‘𝐼) < 𝐾) |
| 131 | 104, 108,
110, 122, 130 | lelttrd 11278 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → (♯‘(𝑓 supp 0)) < 𝐾) |
| 132 | 104, 131 | ltned 11256 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → (♯‘(𝑓 supp 0)) ≠ 𝐾) |
| 133 | 132 | neneqd 2934 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → ¬ (♯‘(𝑓 supp 0)) = 𝐾) |
| 134 | 133 | intnand 488 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → ¬ (ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾)) |
| 135 | 134 | iffalsed 4485 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) ∧ 𝑓 ∈ 𝐷) → if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), 1 , 0 ) = 0 ) |
| 136 | 135 | mpteq2dva 5186 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) → (𝑓 ∈ 𝐷 ↦ if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), 1 , 0 )) = (𝑓 ∈ 𝐷 ↦ 0 )) |
| 137 | | fconstmpt 5681 |
. . . 4
⊢ (𝐷 × { 0 }) = (𝑓 ∈ 𝐷 ↦ 0 ) |
| 138 | 136, 137 | eqtr4di 2786 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) → (𝑓 ∈ 𝐷 ↦ if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), 1 , 0 )) = (𝐷 × { 0 })) |
| 139 | 88, 94, 138 | 3eqtr4d 2778 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...(♯‘𝐼))) → ((𝐼eSymPoly𝑅)‘𝐾) = (𝑓 ∈ 𝐷 ↦ if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), 1 , 0 ))) |
| 140 | 82, 139 | pm2.61dan 812 |
1
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) = (𝑓 ∈ 𝐷 ↦ if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), 1 , 0 ))) |