| Step | Hyp | Ref
| Expression |
| 1 | | mplmulmvr.1 |
. . 3
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| 2 | | mplmulmvr.3 |
. . 3
⊢ 𝑀 = (Base‘𝑃) |
| 3 | | eqid 2733 |
. . 3
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 4 | | mplmulmvr.4 |
. . 3
⊢ · =
(.r‘𝑃) |
| 5 | | mplmulmvr.6 |
. . . 4
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0} |
| 6 | 5 | psrbasfsupp 33579 |
. . 3
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 7 | | mplmulmvr.2 |
. . . 4
⊢ 𝑋 = ((𝐼 mVar 𝑅)‘𝑌) |
| 8 | | eqid 2733 |
. . . . 5
⊢ (𝐼 mVar 𝑅) = (𝐼 mVar 𝑅) |
| 9 | | mplmulmvr.8 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 10 | | mplmulmvr.10 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 11 | | mplmulmvr.9 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝐼) |
| 12 | 1, 8, 2, 9, 10, 11 | mvrcl 21930 |
. . . 4
⊢ (𝜑 → ((𝐼 mVar 𝑅)‘𝑌) ∈ 𝑀) |
| 13 | 7, 12 | eqeltrid 2837 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑀) |
| 14 | | mplmulmvr.11 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑀) |
| 15 | 1, 2, 3, 4, 6, 13,
14 | mplmul 21949 |
. 2
⊢ (𝜑 → (𝑋 · 𝐹) = (𝑏 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))))))) |
| 16 | | eqeq2 2745 |
. . . 4
⊢ ( 0 = if((𝑏‘𝑌) = 0, 0 , (𝐹‘(𝑏 ∘f − 𝐴))) → ((𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))))) = 0 ↔ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))))) = if((𝑏‘𝑌) = 0, 0 , (𝐹‘(𝑏 ∘f − 𝐴))))) |
| 17 | | eqeq2 2745 |
. . . 4
⊢ ((𝐹‘(𝑏 ∘f − 𝐴)) = if((𝑏‘𝑌) = 0, 0 , (𝐹‘(𝑏 ∘f − 𝐴))) → ((𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))))) = (𝐹‘(𝑏 ∘f − 𝐴)) ↔ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))))) = if((𝑏‘𝑌) = 0, 0 , (𝐹‘(𝑏 ∘f − 𝐴))))) |
| 18 | | simplll 774 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝜑) |
| 19 | | ssrab2 4029 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ⊆ 𝐷 |
| 20 | 19 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ⊆ 𝐷) |
| 21 | 20 | sselda 3930 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑥 ∈ 𝐷) |
| 22 | 7 | fveq1i 6829 |
. . . . . . . . . . 11
⊢ (𝑋‘𝑥) = (((𝐼 mVar 𝑅)‘𝑌)‘𝑥) |
| 23 | | mplmulmvr.5 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑅) |
| 24 | | eqid 2733 |
. . . . . . . . . . . 12
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 25 | 9 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
| 26 | 10 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑅 ∈ Ring) |
| 27 | 11 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑌 ∈ 𝐼) |
| 28 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝐷) |
| 29 | | mplmulmvr.7 |
. . . . . . . . . . . 12
⊢ 𝐴 = ((𝟭‘𝐼)‘{𝑌}) |
| 30 | 8, 6, 23, 24, 25, 26, 27, 28, 29 | mvrvalind 33589 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (((𝐼 mVar 𝑅)‘𝑌)‘𝑥) = if(𝑥 = 𝐴, (1r‘𝑅), 0 )) |
| 31 | 22, 30 | eqtrid 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑋‘𝑥) = if(𝑥 = 𝐴, (1r‘𝑅), 0 )) |
| 32 | 18, 21, 31 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → (𝑋‘𝑥) = if(𝑥 = 𝐴, (1r‘𝑅), 0 )) |
| 33 | 32 | oveq1d 7367 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))) = (if(𝑥 = 𝐴, (1r‘𝑅), 0
)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥)))) |
| 34 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) |
| 35 | 34 | fveq1d 6830 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → (𝑥‘𝑌) = (𝐴‘𝑌)) |
| 36 | | 0ne1 12203 |
. . . . . . . . . . . . . 14
⊢ 0 ≠
1 |
| 37 | 36 | a1i 11 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → 0 ≠ 1) |
| 38 | 18, 9 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝐼 ∈ 𝑉) |
| 39 | | nn0ex 12394 |
. . . . . . . . . . . . . . . . . 18
⊢
ℕ0 ∈ V |
| 40 | 39 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → ℕ0 ∈
V) |
| 41 | 5 | ssrab3 4031 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐷 ⊆ (ℕ0
↑m 𝐼) |
| 42 | 20, 41 | sstrdi 3943 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ⊆ (ℕ0
↑m 𝐼)) |
| 43 | 42 | sselda 3930 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑥 ∈ (ℕ0
↑m 𝐼)) |
| 44 | 38, 40, 43 | elmaprd 32665 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑥:𝐼⟶ℕ0) |
| 45 | 44 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → 𝑥:𝐼⟶ℕ0) |
| 46 | 11 | ad4antr 732 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → 𝑌 ∈ 𝐼) |
| 47 | 45, 46 | ffvelcdmd 7024 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → (𝑥‘𝑌) ∈
ℕ0) |
| 48 | 44 | ffnd 6657 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑥 Fn 𝐼) |
| 49 | 9 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
| 50 | 39 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ℕ0 ∈
V) |
| 51 | 41 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐷 ⊆ (ℕ0
↑m 𝐼)) |
| 52 | 51 | sselda 3930 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ (ℕ0
↑m 𝐼)) |
| 53 | 49, 50, 52 | elmaprd 32665 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏:𝐼⟶ℕ0) |
| 54 | 53 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑏:𝐼⟶ℕ0) |
| 55 | 54 | ffnd 6657 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑏 Fn 𝐼) |
| 56 | | breq1 5096 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑥 → (𝑦 ∘r ≤ 𝑏 ↔ 𝑥 ∘r ≤ 𝑏)) |
| 57 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) |
| 58 | 56, 57 | elrabrd 32480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑥 ∘r ≤ 𝑏) |
| 59 | 18, 11 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑌 ∈ 𝐼) |
| 60 | 48, 55, 38, 58, 59 | fnfvor 32594 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → (𝑥‘𝑌) ≤ (𝑏‘𝑌)) |
| 61 | 60 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → (𝑥‘𝑌) ≤ (𝑏‘𝑌)) |
| 62 | | simpllr 775 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → (𝑏‘𝑌) = 0) |
| 63 | 61, 62 | breqtrd 5119 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → (𝑥‘𝑌) ≤ 0) |
| 64 | | nn0le0eq0 12416 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥‘𝑌) ∈ ℕ0 → ((𝑥‘𝑌) ≤ 0 ↔ (𝑥‘𝑌) = 0)) |
| 65 | 64 | biimpa 476 |
. . . . . . . . . . . . . 14
⊢ (((𝑥‘𝑌) ∈ ℕ0 ∧ (𝑥‘𝑌) ≤ 0) → (𝑥‘𝑌) = 0) |
| 66 | 47, 63, 65 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → (𝑥‘𝑌) = 0) |
| 67 | 29 | fveq1i 6829 |
. . . . . . . . . . . . . . 15
⊢ (𝐴‘𝑌) = (((𝟭‘𝐼)‘{𝑌})‘𝑌) |
| 68 | 11 | snssd 4760 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → {𝑌} ⊆ 𝐼) |
| 69 | | snidg 4612 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑌 ∈ 𝐼 → 𝑌 ∈ {𝑌}) |
| 70 | 11, 69 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑌 ∈ {𝑌}) |
| 71 | | ind1 32843 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑉 ∧ {𝑌} ⊆ 𝐼 ∧ 𝑌 ∈ {𝑌}) → (((𝟭‘𝐼)‘{𝑌})‘𝑌) = 1) |
| 72 | 9, 68, 70, 71 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((𝟭‘𝐼)‘{𝑌})‘𝑌) = 1) |
| 73 | 67, 72 | eqtrid 2780 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴‘𝑌) = 1) |
| 74 | 73 | ad4antr 732 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → (𝐴‘𝑌) = 1) |
| 75 | 37, 66, 74 | 3netr4d 3006 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → (𝑥‘𝑌) ≠ (𝐴‘𝑌)) |
| 76 | 75 | neneqd 2934 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → ¬ (𝑥‘𝑌) = (𝐴‘𝑌)) |
| 77 | 35, 76 | pm2.65da 816 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → ¬ 𝑥 = 𝐴) |
| 78 | 77 | iffalsed 4485 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → if(𝑥 = 𝐴, (1r‘𝑅), 0 ) = 0 ) |
| 79 | 78 | oveq1d 7367 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → (if(𝑥 = 𝐴, (1r‘𝑅), 0
)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))) = ( 0 (.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥)))) |
| 80 | | eqid 2733 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 81 | 18, 10 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑅 ∈ Ring) |
| 82 | 1, 80, 2, 6, 14 | mplelf 21936 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐷⟶(Base‘𝑅)) |
| 83 | 18, 82 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝐹:𝐷⟶(Base‘𝑅)) |
| 84 | | simpllr 775 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑏 ∈ 𝐷) |
| 85 | 6 | psrbagcon 21864 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ 𝐷 ∧ 𝑥:𝐼⟶ℕ0 ∧ 𝑥 ∘r ≤ 𝑏) → ((𝑏 ∘f − 𝑥) ∈ 𝐷 ∧ (𝑏 ∘f − 𝑥) ∘r ≤ 𝑏)) |
| 86 | 85 | simpld 494 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ 𝐷 ∧ 𝑥:𝐼⟶ℕ0 ∧ 𝑥 ∘r ≤ 𝑏) → (𝑏 ∘f − 𝑥) ∈ 𝐷) |
| 87 | 84, 44, 58, 86 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → (𝑏 ∘f − 𝑥) ∈ 𝐷) |
| 88 | 83, 87 | ffvelcdmd 7024 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → (𝐹‘(𝑏 ∘f − 𝑥)) ∈ (Base‘𝑅)) |
| 89 | 80, 3, 23, 81, 88 | ringlzd 20215 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → ( 0 (.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))) = 0 ) |
| 90 | 33, 79, 89 | 3eqtrd 2772 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))) = 0 ) |
| 91 | 90 | mpteq2dva 5186 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ 0 )) |
| 92 | 91 | oveq2d 7368 |
. . . . 5
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ 0 ))) |
| 93 | 10 | ringgrpd 20162 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 94 | 93 | grpmndd 18861 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 95 | 94 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) → 𝑅 ∈ Mnd) |
| 96 | | ovex 7385 |
. . . . . . . 8
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 97 | 5, 96 | rab2ex 5282 |
. . . . . . 7
⊢ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ∈ V |
| 98 | 97 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ∈ V) |
| 99 | 23 | gsumz 18746 |
. . . . . 6
⊢ ((𝑅 ∈ Mnd ∧ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ∈ V) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ 0 )) = 0 ) |
| 100 | 95, 98, 99 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ 0 )) = 0 ) |
| 101 | 92, 100 | eqtrd 2768 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑏‘𝑌) = 0) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))))) = 0 ) |
| 102 | | simplll 774 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝜑) |
| 103 | 19 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ⊆ 𝐷) |
| 104 | 103 | sselda 3930 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑥 ∈ 𝐷) |
| 105 | 102, 104,
31 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → (𝑋‘𝑥) = if(𝑥 = 𝐴, (1r‘𝑅), 0 )) |
| 106 | 105 | oveq1d 7367 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))) = (if(𝑥 = 𝐴, (1r‘𝑅), 0
)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥)))) |
| 107 | | ovif 7450 |
. . . . . . . . 9
⊢ (if(𝑥 = 𝐴, (1r‘𝑅), 0
)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))) = if(𝑥 = 𝐴, ((1r‘𝑅)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))), ( 0 (.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥)))) |
| 108 | 107 | a1i 11 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → (if(𝑥 = 𝐴, (1r‘𝑅), 0
)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))) = if(𝑥 = 𝐴, ((1r‘𝑅)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))), ( 0 (.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))))) |
| 109 | 102, 10 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑅 ∈ Ring) |
| 110 | 102, 82 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝐹:𝐷⟶(Base‘𝑅)) |
| 111 | | simpllr 775 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑏 ∈ 𝐷) |
| 112 | 102, 9 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝐼 ∈ 𝑉) |
| 113 | 39 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → ℕ0 ∈
V) |
| 114 | 41, 104 | sselid 3928 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑥 ∈ (ℕ0
↑m 𝐼)) |
| 115 | 112, 113,
114 | elmaprd 32665 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑥:𝐼⟶ℕ0) |
| 116 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) |
| 117 | 56, 116 | elrabrd 32480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → 𝑥 ∘r ≤ 𝑏) |
| 118 | 111, 115,
117, 86 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → (𝑏 ∘f − 𝑥) ∈ 𝐷) |
| 119 | 110, 118 | ffvelcdmd 7024 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → (𝐹‘(𝑏 ∘f − 𝑥)) ∈ (Base‘𝑅)) |
| 120 | 80, 3, 24, 109, 119 | ringlidmd 20192 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → ((1r‘𝑅)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))) = (𝐹‘(𝑏 ∘f − 𝑥))) |
| 121 | 120 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → ((1r‘𝑅)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))) = (𝐹‘(𝑏 ∘f − 𝑥))) |
| 122 | | oveq2 7360 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (𝑏 ∘f − 𝑥) = (𝑏 ∘f − 𝐴)) |
| 123 | 122 | adantl 481 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → (𝑏 ∘f − 𝑥) = (𝑏 ∘f − 𝐴)) |
| 124 | 123 | fveq2d 6832 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → (𝐹‘(𝑏 ∘f − 𝑥)) = (𝐹‘(𝑏 ∘f − 𝐴))) |
| 125 | 121, 124 | eqtrd 2768 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ 𝑥 = 𝐴) → ((1r‘𝑅)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))) = (𝐹‘(𝑏 ∘f − 𝐴))) |
| 126 | 80, 3, 23, 109, 119 | ringlzd 20215 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → ( 0 (.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))) = 0 ) |
| 127 | 126 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) ∧ ¬ 𝑥 = 𝐴) → ( 0 (.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))) = 0 ) |
| 128 | 125, 127 | ifeq12da 4508 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → if(𝑥 = 𝐴, ((1r‘𝑅)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))), ( 0 (.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥)))) = if(𝑥 = 𝐴, (𝐹‘(𝑏 ∘f − 𝐴)), 0 )) |
| 129 | 106, 108,
128 | 3eqtrd 2772 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) → ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))) = if(𝑥 = 𝐴, (𝐹‘(𝑏 ∘f − 𝐴)), 0 )) |
| 130 | 129 | mpteq2dva 5186 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ if(𝑥 = 𝐴, (𝐹‘(𝑏 ∘f − 𝐴)), 0 ))) |
| 131 | 130 | oveq2d 7368 |
. . . . 5
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ if(𝑥 = 𝐴, (𝐹‘(𝑏 ∘f − 𝐴)), 0 )))) |
| 132 | 94 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → 𝑅 ∈ Mnd) |
| 133 | 97 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ∈ V) |
| 134 | | breq1 5096 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑦 ∘r ≤ 𝑏 ↔ 𝐴 ∘r ≤ 𝑏)) |
| 135 | | breq1 5096 |
. . . . . . . . . 10
⊢ (ℎ = 𝐴 → (ℎ finSupp 0 ↔ 𝐴 finSupp 0)) |
| 136 | 39 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℕ0 ∈
V) |
| 137 | | indf 32841 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ {𝑌} ⊆ 𝐼) → ((𝟭‘𝐼)‘{𝑌}):𝐼⟶{0, 1}) |
| 138 | 9, 68, 137 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝟭‘𝐼)‘{𝑌}):𝐼⟶{0, 1}) |
| 139 | 29 | feq1i 6647 |
. . . . . . . . . . . . 13
⊢ (𝐴:𝐼⟶{0, 1} ↔
((𝟭‘𝐼)‘{𝑌}):𝐼⟶{0, 1}) |
| 140 | 138, 139 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴:𝐼⟶{0, 1}) |
| 141 | | 0nn0 12403 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℕ0 |
| 142 | 141 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈
ℕ0) |
| 143 | | 1nn0 12404 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℕ0 |
| 144 | 143 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈
ℕ0) |
| 145 | 142, 144 | prssd 4773 |
. . . . . . . . . . . 12
⊢ (𝜑 → {0, 1} ⊆
ℕ0) |
| 146 | 140, 145 | fssd 6673 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴:𝐼⟶ℕ0) |
| 147 | 136, 9, 146 | elmapdd 8771 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ (ℕ0
↑m 𝐼)) |
| 148 | 146 | ffund 6660 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun 𝐴) |
| 149 | 29 | oveq1i 7362 |
. . . . . . . . . . . . 13
⊢ (𝐴 supp 0) =
(((𝟭‘𝐼)‘{𝑌}) supp 0) |
| 150 | | indsupp 32855 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ {𝑌} ⊆ 𝐼) → (((𝟭‘𝐼)‘{𝑌}) supp 0) = {𝑌}) |
| 151 | 9, 68, 150 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝟭‘𝐼)‘{𝑌}) supp 0) = {𝑌}) |
| 152 | 149, 151 | eqtrid 2780 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 supp 0) = {𝑌}) |
| 153 | | snfi 8972 |
. . . . . . . . . . . 12
⊢ {𝑌} ∈ Fin |
| 154 | 152, 153 | eqeltrdi 2841 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 supp 0) ∈ Fin) |
| 155 | 147, 142,
148, 154 | isfsuppd 9257 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 finSupp 0) |
| 156 | 135, 147,
155 | elrabd 3645 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 157 | 156, 5 | eleqtrrdi 2844 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| 158 | 157 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → 𝐴 ∈ 𝐷) |
| 159 | | breq1 5096 |
. . . . . . . . . 10
⊢ (1 =
if(𝑢 ∈ {𝑌}, 1, 0) → (1 ≤ (𝑏‘𝑢) ↔ if(𝑢 ∈ {𝑌}, 1, 0) ≤ (𝑏‘𝑢))) |
| 160 | | breq1 5096 |
. . . . . . . . . 10
⊢ (0 =
if(𝑢 ∈ {𝑌}, 1, 0) → (0 ≤ (𝑏‘𝑢) ↔ if(𝑢 ∈ {𝑌}, 1, 0) ≤ (𝑏‘𝑢))) |
| 161 | 53 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → 𝑏:𝐼⟶ℕ0) |
| 162 | 161 | ffvelcdmda 7023 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑢 ∈ 𝐼) → (𝑏‘𝑢) ∈
ℕ0) |
| 163 | 162 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑢 ∈ 𝐼) ∧ 𝑢 ∈ {𝑌}) → (𝑏‘𝑢) ∈
ℕ0) |
| 164 | | elsni 4592 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ {𝑌} → 𝑢 = 𝑌) |
| 165 | 164 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑢 ∈ 𝐼) ∧ 𝑢 ∈ {𝑌}) → 𝑢 = 𝑌) |
| 166 | 165 | fveq2d 6832 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑢 ∈ 𝐼) ∧ 𝑢 ∈ {𝑌}) → (𝑏‘𝑢) = (𝑏‘𝑌)) |
| 167 | | simpllr 775 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑢 ∈ 𝐼) ∧ 𝑢 ∈ {𝑌}) → ¬ (𝑏‘𝑌) = 0) |
| 168 | 167 | neqned 2936 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑢 ∈ 𝐼) ∧ 𝑢 ∈ {𝑌}) → (𝑏‘𝑌) ≠ 0) |
| 169 | 166, 168 | eqnetrd 2996 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑢 ∈ 𝐼) ∧ 𝑢 ∈ {𝑌}) → (𝑏‘𝑢) ≠ 0) |
| 170 | | elnnne0 12402 |
. . . . . . . . . . . 12
⊢ ((𝑏‘𝑢) ∈ ℕ ↔ ((𝑏‘𝑢) ∈ ℕ0 ∧ (𝑏‘𝑢) ≠ 0)) |
| 171 | 163, 169,
170 | sylanbrc 583 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑢 ∈ 𝐼) ∧ 𝑢 ∈ {𝑌}) → (𝑏‘𝑢) ∈ ℕ) |
| 172 | 171 | nnge1d 12180 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑢 ∈ 𝐼) ∧ 𝑢 ∈ {𝑌}) → 1 ≤ (𝑏‘𝑢)) |
| 173 | 162 | nn0ge0d 12452 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑢 ∈ 𝐼) → 0 ≤ (𝑏‘𝑢)) |
| 174 | 173 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑢 ∈ 𝐼) ∧ ¬ 𝑢 ∈ {𝑌}) → 0 ≤ (𝑏‘𝑢)) |
| 175 | 159, 160,
172, 174 | ifbothda 4513 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑢 ∈ 𝐼) → if(𝑢 ∈ {𝑌}, 1, 0) ≤ (𝑏‘𝑢)) |
| 176 | 175 | ralrimiva 3125 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → ∀𝑢 ∈ 𝐼 if(𝑢 ∈ {𝑌}, 1, 0) ≤ (𝑏‘𝑢)) |
| 177 | 9 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → 𝐼 ∈ 𝑉) |
| 178 | 143 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑢 ∈ 𝐼) → 1 ∈
ℕ0) |
| 179 | 141 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑢 ∈ 𝐼) → 0 ∈
ℕ0) |
| 180 | 178, 179 | ifexd 4523 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑢 ∈ 𝐼) → if(𝑢 ∈ {𝑌}, 1, 0) ∈ V) |
| 181 | | fvexd 6843 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) ∧ 𝑢 ∈ 𝐼) → (𝑏‘𝑢) ∈ V) |
| 182 | | indval 32839 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ {𝑌} ⊆ 𝐼) → ((𝟭‘𝐼)‘{𝑌}) = (𝑢 ∈ 𝐼 ↦ if(𝑢 ∈ {𝑌}, 1, 0))) |
| 183 | 9, 68, 182 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝟭‘𝐼)‘{𝑌}) = (𝑢 ∈ 𝐼 ↦ if(𝑢 ∈ {𝑌}, 1, 0))) |
| 184 | 29, 183 | eqtrid 2780 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 = (𝑢 ∈ 𝐼 ↦ if(𝑢 ∈ {𝑌}, 1, 0))) |
| 185 | 184 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → 𝐴 = (𝑢 ∈ 𝐼 ↦ if(𝑢 ∈ {𝑌}, 1, 0))) |
| 186 | 53 | feqmptd 6896 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 = (𝑢 ∈ 𝐼 ↦ (𝑏‘𝑢))) |
| 187 | 186 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → 𝑏 = (𝑢 ∈ 𝐼 ↦ (𝑏‘𝑢))) |
| 188 | 177, 180,
181, 185, 187 | ofrfval2 7637 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → (𝐴 ∘r ≤ 𝑏 ↔ ∀𝑢 ∈ 𝐼 if(𝑢 ∈ {𝑌}, 1, 0) ≤ (𝑏‘𝑢))) |
| 189 | 176, 188 | mpbird 257 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → 𝐴 ∘r ≤ 𝑏) |
| 190 | 134, 158,
189 | elrabd 3645 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → 𝐴 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏}) |
| 191 | | eqid 2733 |
. . . . . 6
⊢ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ if(𝑥 = 𝐴, (𝐹‘(𝑏 ∘f − 𝐴)), 0 )) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ if(𝑥 = 𝐴, (𝐹‘(𝑏 ∘f − 𝐴)), 0 )) |
| 192 | 82 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → 𝐹:𝐷⟶(Base‘𝑅)) |
| 193 | | simplr 768 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → 𝑏 ∈ 𝐷) |
| 194 | 146 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → 𝐴:𝐼⟶ℕ0) |
| 195 | 6 | psrbagcon 21864 |
. . . . . . . . 9
⊢ ((𝑏 ∈ 𝐷 ∧ 𝐴:𝐼⟶ℕ0 ∧ 𝐴 ∘r ≤ 𝑏) → ((𝑏 ∘f − 𝐴) ∈ 𝐷 ∧ (𝑏 ∘f − 𝐴) ∘r ≤ 𝑏)) |
| 196 | 195 | simpld 494 |
. . . . . . . 8
⊢ ((𝑏 ∈ 𝐷 ∧ 𝐴:𝐼⟶ℕ0 ∧ 𝐴 ∘r ≤ 𝑏) → (𝑏 ∘f − 𝐴) ∈ 𝐷) |
| 197 | 193, 194,
189, 196 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → (𝑏 ∘f − 𝐴) ∈ 𝐷) |
| 198 | 192, 197 | ffvelcdmd 7024 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → (𝐹‘(𝑏 ∘f − 𝐴)) ∈ (Base‘𝑅)) |
| 199 | 23, 132, 133, 190, 191, 198 | gsummptif1n0 19880 |
. . . . 5
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ if(𝑥 = 𝐴, (𝐹‘(𝑏 ∘f − 𝐴)), 0 ))) = (𝐹‘(𝑏 ∘f − 𝐴))) |
| 200 | 131, 199 | eqtrd 2768 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ ¬ (𝑏‘𝑌) = 0) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))))) = (𝐹‘(𝑏 ∘f − 𝐴))) |
| 201 | 16, 17, 101, 200 | ifbothda 4513 |
. . 3
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥))))) = if((𝑏‘𝑌) = 0, 0 , (𝐹‘(𝑏 ∘f − 𝐴)))) |
| 202 | 201 | mpteq2dva 5186 |
. 2
⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑏} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑥)))))) = (𝑏 ∈ 𝐷 ↦ if((𝑏‘𝑌) = 0, 0 , (𝐹‘(𝑏 ∘f − 𝐴))))) |
| 203 | 15, 202 | eqtrd 2768 |
1
⊢ (𝜑 → (𝑋 · 𝐹) = (𝑏 ∈ 𝐷 ↦ if((𝑏‘𝑌) = 0, 0 , (𝐹‘(𝑏 ∘f − 𝐴))))) |