| Step | Hyp | Ref
| Expression |
| 1 | | ovif12 7452 |
. . . 4
⊢
(if((𝑓‘𝑌) = 0,
(0g‘𝑅),
((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))))(+g‘𝑅)if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))) = if((𝑓‘𝑌) = 0, ((0g‘𝑅)(+g‘𝑅)if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))), (((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})))(+g‘𝑅)(0g‘𝑅))) |
| 2 | | eqid 2733 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 3 | | eqid 2733 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 4 | | eqid 2733 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 5 | | esplyind.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 6 | 5 | ringgrpd 20162 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 7 | 6 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → 𝑅 ∈ Grp) |
| 8 | | eqid 2733 |
. . . . . . . . . . 11
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 9 | 2, 8, 5 | ringidcld 20186 |
. . . . . . . . . 10
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 10 | 9 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 11 | | ringgrp 20158 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 12 | 2, 4 | grpidcl 18880 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Grp →
(0g‘𝑅)
∈ (Base‘𝑅)) |
| 13 | 5, 11, 12 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 15 | 10, 14 | ifcld 4521 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 16 | 15 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 17 | 2, 3, 4, 7, 16 | grplidd 18884 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → ((0g‘𝑅)(+g‘𝑅)if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) = if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) |
| 18 | | snsspr1 4765 |
. . . . . . . . . . 11
⊢ {0}
⊆ {0, 1} |
| 19 | 18 | biantru 529 |
. . . . . . . . . 10
⊢ (ran
(𝑓 ↾ 𝐽) ⊆ {0, 1} ↔ (ran
(𝑓 ↾ 𝐽) ⊆ {0, 1} ∧ {0}
⊆ {0, 1})) |
| 20 | | unss 4139 |
. . . . . . . . . 10
⊢ ((ran
(𝑓 ↾ 𝐽) ⊆ {0, 1} ∧ {0}
⊆ {0, 1}) ↔ (ran (𝑓 ↾ 𝐽) ∪ {0}) ⊆ {0,
1}) |
| 21 | 19, 20 | bitri 275 |
. . . . . . . . 9
⊢ (ran
(𝑓 ↾ 𝐽) ⊆ {0, 1} ↔ (ran
(𝑓 ↾ 𝐽) ∪ {0}) ⊆ {0,
1}) |
| 22 | | esplyind.i |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → 𝐼 ∈ Fin) |
| 24 | | nn0ex 12394 |
. . . . . . . . . . . . . . . . . . 19
⊢
ℕ0 ∈ V |
| 25 | 24 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → ℕ0 ∈
V) |
| 26 | | esplyind.d |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0} |
| 27 | 26 | ssrab3 4031 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐷 ⊆ (ℕ0
↑m 𝐼) |
| 28 | 27 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐷 ⊆ (ℕ0
↑m 𝐼)) |
| 29 | 28 | sselda 3930 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → 𝑓 ∈ (ℕ0
↑m 𝐼)) |
| 30 | 23, 25, 29 | elmaprd 32665 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → 𝑓:𝐼⟶ℕ0) |
| 31 | 30 | freld 6662 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → Rel 𝑓) |
| 32 | 30 | ffnd 6657 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → 𝑓 Fn 𝐼) |
| 33 | 32 | fndmd 6591 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → dom 𝑓 = 𝐼) |
| 34 | | esplyind.j |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐽 = (𝐼 ∖ {𝑌}) |
| 35 | 34 | uneq1i 4113 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐽 ∪ {𝑌}) = ((𝐼 ∖ {𝑌}) ∪ {𝑌}) |
| 36 | | esplyind.y |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑌 ∈ 𝐼) |
| 37 | 36 | snssd 4760 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {𝑌} ⊆ 𝐼) |
| 38 | | undifr 4432 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑌} ⊆ 𝐼 ↔ ((𝐼 ∖ {𝑌}) ∪ {𝑌}) = 𝐼) |
| 39 | 37, 38 | sylib 218 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝐼 ∖ {𝑌}) ∪ {𝑌}) = 𝐼) |
| 40 | 35, 39 | eqtr2id 2781 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐼 = (𝐽 ∪ {𝑌})) |
| 41 | 40 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → 𝐼 = (𝐽 ∪ {𝑌})) |
| 42 | 33, 41 | eqtrd 2768 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → dom 𝑓 = (𝐽 ∪ {𝑌})) |
| 43 | 34 | ineq1i 4165 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐽 ∩ {𝑌}) = ((𝐼 ∖ {𝑌}) ∩ {𝑌}) |
| 44 | | disjdifr 4422 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∖ {𝑌}) ∩ {𝑌}) = ∅ |
| 45 | 43, 44 | eqtri 2756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐽 ∩ {𝑌}) = ∅ |
| 46 | 45 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (𝐽 ∩ {𝑌}) = ∅) |
| 47 | | reldisjun 5985 |
. . . . . . . . . . . . . . . 16
⊢ ((Rel
𝑓 ∧ dom 𝑓 = (𝐽 ∪ {𝑌}) ∧ (𝐽 ∩ {𝑌}) = ∅) → 𝑓 = ((𝑓 ↾ 𝐽) ∪ (𝑓 ↾ {𝑌}))) |
| 48 | 31, 42, 46, 47 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → 𝑓 = ((𝑓 ↾ 𝐽) ∪ (𝑓 ↾ {𝑌}))) |
| 49 | 48 | rneqd 5882 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → ran 𝑓 = ran ((𝑓 ↾ 𝐽) ∪ (𝑓 ↾ {𝑌}))) |
| 50 | | rnun 6097 |
. . . . . . . . . . . . . 14
⊢ ran
((𝑓 ↾ 𝐽) ∪ (𝑓 ↾ {𝑌})) = (ran (𝑓 ↾ 𝐽) ∪ ran (𝑓 ↾ {𝑌})) |
| 51 | 49, 50 | eqtr2di 2785 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (ran (𝑓 ↾ 𝐽) ∪ ran (𝑓 ↾ {𝑌})) = ran 𝑓) |
| 52 | 32 | fnfund 6587 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → Fun 𝑓) |
| 53 | 36 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → 𝑌 ∈ 𝐼) |
| 54 | 53, 33 | eleqtrrd 2836 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → 𝑌 ∈ dom 𝑓) |
| 55 | | rnressnsn 32662 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝑓 ∧ 𝑌 ∈ dom 𝑓) → ran (𝑓 ↾ {𝑌}) = {(𝑓‘𝑌)}) |
| 56 | 52, 54, 55 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → ran (𝑓 ↾ {𝑌}) = {(𝑓‘𝑌)}) |
| 57 | 56 | uneq2d 4117 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (ran (𝑓 ↾ 𝐽) ∪ ran (𝑓 ↾ {𝑌})) = (ran (𝑓 ↾ 𝐽) ∪ {(𝑓‘𝑌)})) |
| 58 | 51, 57 | eqtr3d 2770 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → ran 𝑓 = (ran (𝑓 ↾ 𝐽) ∪ {(𝑓‘𝑌)})) |
| 59 | 58 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → ran 𝑓 = (ran (𝑓 ↾ 𝐽) ∪ {(𝑓‘𝑌)})) |
| 60 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → (𝑓‘𝑌) = 0) |
| 61 | 60 | sneqd 4587 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → {(𝑓‘𝑌)} = {0}) |
| 62 | 61 | uneq2d 4117 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → (ran (𝑓 ↾ 𝐽) ∪ {(𝑓‘𝑌)}) = (ran (𝑓 ↾ 𝐽) ∪ {0})) |
| 63 | 59, 62 | eqtrd 2768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → ran 𝑓 = (ran (𝑓 ↾ 𝐽) ∪ {0})) |
| 64 | 63 | sseq1d 3962 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → (ran 𝑓 ⊆ {0, 1} ↔ (ran (𝑓 ↾ 𝐽) ∪ {0}) ⊆ {0,
1})) |
| 65 | 21, 64 | bitr4id 290 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → (ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ↔ ran 𝑓 ⊆ {0,
1})) |
| 66 | 48 | oveq1d 7367 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (𝑓 supp 0) = (((𝑓 ↾ 𝐽) ∪ (𝑓 ↾ {𝑌})) supp 0)) |
| 67 | 29 | resexd 5981 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (𝑓 ↾ 𝐽) ∈ V) |
| 68 | 29 | resexd 5981 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (𝑓 ↾ {𝑌}) ∈ V) |
| 69 | | 0nn0 12403 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℕ0 |
| 70 | 69 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → 0 ∈
ℕ0) |
| 71 | 67, 68, 70 | suppun2 32669 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (((𝑓 ↾ 𝐽) ∪ (𝑓 ↾ {𝑌})) supp 0) = (((𝑓 ↾ 𝐽) supp 0) ∪ ((𝑓 ↾ {𝑌}) supp 0))) |
| 72 | 66, 71 | eqtrd 2768 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (𝑓 supp 0) = (((𝑓 ↾ 𝐽) supp 0) ∪ ((𝑓 ↾ {𝑌}) supp 0))) |
| 73 | 72 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → (𝑓 supp 0) = (((𝑓 ↾ 𝐽) supp 0) ∪ ((𝑓 ↾ {𝑌}) supp 0))) |
| 74 | | fnressn 7097 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 Fn 𝐼 ∧ 𝑌 ∈ 𝐼) → (𝑓 ↾ {𝑌}) = {〈𝑌, (𝑓‘𝑌)〉}) |
| 75 | 32, 53, 74 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (𝑓 ↾ {𝑌}) = {〈𝑌, (𝑓‘𝑌)〉}) |
| 76 | 75 | oveq1d 7367 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → ((𝑓 ↾ {𝑌}) supp 0) = ({〈𝑌, (𝑓‘𝑌)〉} supp 0)) |
| 77 | 30, 53 | ffvelcdmd 7024 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (𝑓‘𝑌) ∈
ℕ0) |
| 78 | | eqid 2733 |
. . . . . . . . . . . . . . . . 17
⊢
{〈𝑌, (𝑓‘𝑌)〉} = {〈𝑌, (𝑓‘𝑌)〉} |
| 79 | 78 | suppsnop 8114 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑌 ∈ 𝐼 ∧ (𝑓‘𝑌) ∈ ℕ0 ∧ 0 ∈
ℕ0) → ({〈𝑌, (𝑓‘𝑌)〉} supp 0) = if((𝑓‘𝑌) = 0, ∅, {𝑌})) |
| 80 | 53, 77, 70, 79 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → ({〈𝑌, (𝑓‘𝑌)〉} supp 0) = if((𝑓‘𝑌) = 0, ∅, {𝑌})) |
| 81 | 76, 80 | eqtrd 2768 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → ((𝑓 ↾ {𝑌}) supp 0) = if((𝑓‘𝑌) = 0, ∅, {𝑌})) |
| 82 | 81 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → ((𝑓 ↾ {𝑌}) supp 0) = if((𝑓‘𝑌) = 0, ∅, {𝑌})) |
| 83 | 60 | iftrued 4482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → if((𝑓‘𝑌) = 0, ∅, {𝑌}) = ∅) |
| 84 | 82, 83 | eqtrd 2768 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → ((𝑓 ↾ {𝑌}) supp 0) = ∅) |
| 85 | 84 | uneq2d 4117 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → (((𝑓 ↾ 𝐽) supp 0) ∪ ((𝑓 ↾ {𝑌}) supp 0)) = (((𝑓 ↾ 𝐽) supp 0) ∪ ∅)) |
| 86 | | un0 4343 |
. . . . . . . . . . 11
⊢ (((𝑓 ↾ 𝐽) supp 0) ∪ ∅) = ((𝑓 ↾ 𝐽) supp 0) |
| 87 | 85, 86 | eqtrdi 2784 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → (((𝑓 ↾ 𝐽) supp 0) ∪ ((𝑓 ↾ {𝑌}) supp 0)) = ((𝑓 ↾ 𝐽) supp 0)) |
| 88 | 73, 87 | eqtr2d 2769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → ((𝑓 ↾ 𝐽) supp 0) = (𝑓 supp 0)) |
| 89 | 88 | fveqeq2d 6836 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → ((♯‘((𝑓 ↾ 𝐽) supp 0)) = 𝐾 ↔ (♯‘(𝑓 supp 0)) = 𝐾)) |
| 90 | 65, 89 | anbi12d 632 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → ((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾) ↔ (ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾))) |
| 91 | 90 | ifbid 4498 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)) = if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) |
| 92 | 17, 91 | eqtrd 2768 |
. . . . 5
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → ((0g‘𝑅)(+g‘𝑅)if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) = if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) |
| 93 | 6 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → 𝑅 ∈ Grp) |
| 94 | | esplyind.w |
. . . . . . . . . 10
⊢ 𝑊 = (𝐼 mPoly 𝑅) |
| 95 | | eqid 2733 |
. . . . . . . . . 10
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 96 | 26 | psrbasfsupp 33579 |
. . . . . . . . . 10
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 97 | | esplyind.g |
. . . . . . . . . . . 12
⊢ 𝐺 = ((𝐼extendVars𝑅)‘𝑌) |
| 98 | 97 | fveq1i 6829 |
. . . . . . . . . . 11
⊢ (𝐺‘(𝐸‘(𝐾 − 1))) = (((𝐼extendVars𝑅)‘𝑌)‘(𝐸‘(𝐾 − 1))) |
| 99 | | eqid 2733 |
. . . . . . . . . . . . 13
⊢
(Base‘(𝐽 mPoly
𝑅)) = (Base‘(𝐽 mPoly 𝑅)) |
| 100 | 94 | fveq2i 6831 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑊) =
(Base‘(𝐼 mPoly 𝑅)) |
| 101 | 26, 4, 22, 5, 2, 34, 99, 36, 100 | extvfvalf 33588 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐼extendVars𝑅)‘𝑌):(Base‘(𝐽 mPoly 𝑅))⟶(Base‘𝑊)) |
| 102 | | esplyind.e |
. . . . . . . . . . . . . 14
⊢ 𝐸 = (𝐽eSymPoly𝑅) |
| 103 | 102 | fveq1i 6829 |
. . . . . . . . . . . . 13
⊢ (𝐸‘(𝐾 − 1)) = ((𝐽eSymPoly𝑅)‘(𝐾 − 1)) |
| 104 | | esplyind.1 |
. . . . . . . . . . . . . 14
⊢ 𝐶 = {ℎ ∈ (ℕ0
↑m 𝐽)
∣ ℎ finSupp
0} |
| 105 | | difssd 4086 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐼 ∖ {𝑌}) ⊆ 𝐼) |
| 106 | 34, 105 | eqsstrid 3969 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
| 107 | 22, 106 | ssfid 9160 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐽 ∈ Fin) |
| 108 | | esplyind.k |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ (1...(♯‘𝐼))) |
| 109 | | elfznn 13455 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈
(1...(♯‘𝐼))
→ 𝐾 ∈
ℕ) |
| 110 | | nnm1nn0 12429 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ ℕ → (𝐾 − 1) ∈
ℕ0) |
| 111 | 108, 109,
110 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐾 − 1) ∈
ℕ0) |
| 112 | 104, 107,
5, 111, 99 | esplympl 33607 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐽eSymPoly𝑅)‘(𝐾 − 1)) ∈ (Base‘(𝐽 mPoly 𝑅))) |
| 113 | 103, 112 | eqeltrid 2837 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸‘(𝐾 − 1)) ∈ (Base‘(𝐽 mPoly 𝑅))) |
| 114 | 101, 113 | ffvelcdmd 7024 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐼extendVars𝑅)‘𝑌)‘(𝐸‘(𝐾 − 1))) ∈ (Base‘𝑊)) |
| 115 | 98, 114 | eqeltrid 2837 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘(𝐸‘(𝐾 − 1))) ∈ (Base‘𝑊)) |
| 116 | 94, 2, 95, 96, 115 | mplelf 21936 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘(𝐸‘(𝐾 − 1))):𝐷⟶(Base‘𝑅)) |
| 117 | 116 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → (𝐺‘(𝐸‘(𝐾 − 1))):𝐷⟶(Base‘𝑅)) |
| 118 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → 𝑓 ∈ 𝐷) |
| 119 | | indf 32841 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ Fin ∧ {𝑌} ⊆ 𝐼) → ((𝟭‘𝐼)‘{𝑌}):𝐼⟶{0, 1}) |
| 120 | 22, 37, 119 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝟭‘𝐼)‘{𝑌}):𝐼⟶{0, 1}) |
| 121 | 69 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈
ℕ0) |
| 122 | | 1nn0 12404 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℕ0 |
| 123 | 122 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℕ0) |
| 124 | 121, 123 | prssd 4773 |
. . . . . . . . . . 11
⊢ (𝜑 → {0, 1} ⊆
ℕ0) |
| 125 | 120, 124 | fssd 6673 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝟭‘𝐼)‘{𝑌}):𝐼⟶ℕ0) |
| 126 | 125 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → ((𝟭‘𝐼)‘{𝑌}):𝐼⟶ℕ0) |
| 127 | 22 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → 𝐼 ∈ Fin) |
| 128 | 127 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑌) → 𝐼 ∈ Fin) |
| 129 | 37 | ad4antr 732 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑌) → {𝑌} ⊆ 𝐼) |
| 130 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑌) → 𝑥 = 𝑌) |
| 131 | | velsn 4591 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {𝑌} ↔ 𝑥 = 𝑌) |
| 132 | 130, 131 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑌) → 𝑥 ∈ {𝑌}) |
| 133 | | ind1 32843 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ Fin ∧ {𝑌} ⊆ 𝐼 ∧ 𝑥 ∈ {𝑌}) → (((𝟭‘𝐼)‘{𝑌})‘𝑥) = 1) |
| 134 | 128, 129,
132, 133 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑌) → (((𝟭‘𝐼)‘{𝑌})‘𝑥) = 1) |
| 135 | 30 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑌) → 𝑓:𝐼⟶ℕ0) |
| 136 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑌) → 𝑥 ∈ 𝐼) |
| 137 | 135, 136 | ffvelcdmd 7024 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑌) → (𝑓‘𝑥) ∈
ℕ0) |
| 138 | 130 | fveq2d 6832 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑌) → (𝑓‘𝑥) = (𝑓‘𝑌)) |
| 139 | | simpllr 775 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑌) → ¬ (𝑓‘𝑌) = 0) |
| 140 | 139 | neqned 2936 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑌) → (𝑓‘𝑌) ≠ 0) |
| 141 | 138, 140 | eqnetrd 2996 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑌) → (𝑓‘𝑥) ≠ 0) |
| 142 | | elnnne0 12402 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓‘𝑥) ∈ ℕ ↔ ((𝑓‘𝑥) ∈ ℕ0 ∧ (𝑓‘𝑥) ≠ 0)) |
| 143 | 137, 141,
142 | sylanbrc 583 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑌) → (𝑓‘𝑥) ∈ ℕ) |
| 144 | 143 | nnge1d 12180 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑌) → 1 ≤ (𝑓‘𝑥)) |
| 145 | 134, 144 | eqbrtrd 5115 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑌) → (((𝟭‘𝐼)‘{𝑌})‘𝑥) ≤ (𝑓‘𝑥)) |
| 146 | 127 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ≠ 𝑌) → 𝐼 ∈ Fin) |
| 147 | 37 | ad4antr 732 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ≠ 𝑌) → {𝑌} ⊆ 𝐼) |
| 148 | | simplr 768 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ≠ 𝑌) → 𝑥 ∈ 𝐼) |
| 149 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ≠ 𝑌) → 𝑥 ≠ 𝑌) |
| 150 | 148, 149 | eldifsnd 4738 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ≠ 𝑌) → 𝑥 ∈ (𝐼 ∖ {𝑌})) |
| 151 | | ind0 32844 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ Fin ∧ {𝑌} ⊆ 𝐼 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) → (((𝟭‘𝐼)‘{𝑌})‘𝑥) = 0) |
| 152 | 146, 147,
150, 151 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ≠ 𝑌) → (((𝟭‘𝐼)‘{𝑌})‘𝑥) = 0) |
| 153 | 30 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → 𝑓:𝐼⟶ℕ0) |
| 154 | 153 | ffvelcdmda 7023 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) → (𝑓‘𝑥) ∈
ℕ0) |
| 155 | 154 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ≠ 𝑌) → (𝑓‘𝑥) ∈
ℕ0) |
| 156 | 155 | nn0ge0d 12452 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ≠ 𝑌) → 0 ≤ (𝑓‘𝑥)) |
| 157 | 152, 156 | eqbrtrd 5115 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ≠ 𝑌) → (((𝟭‘𝐼)‘{𝑌})‘𝑥) ≤ (𝑓‘𝑥)) |
| 158 | 145, 157 | pm2.61dane 3016 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) → (((𝟭‘𝐼)‘{𝑌})‘𝑥) ≤ (𝑓‘𝑥)) |
| 159 | 158 | ralrimiva 3125 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → ∀𝑥 ∈ 𝐼 (((𝟭‘𝐼)‘{𝑌})‘𝑥) ≤ (𝑓‘𝑥)) |
| 160 | 126 | ffnd 6657 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → ((𝟭‘𝐼)‘{𝑌}) Fn 𝐼) |
| 161 | 32 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → 𝑓 Fn 𝐼) |
| 162 | | inidm 4176 |
. . . . . . . . . . 11
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
| 163 | | eqidd 2734 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) → (((𝟭‘𝐼)‘{𝑌})‘𝑥) = (((𝟭‘𝐼)‘{𝑌})‘𝑥)) |
| 164 | | eqidd 2734 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ 𝑥 ∈ 𝐼) → (𝑓‘𝑥) = (𝑓‘𝑥)) |
| 165 | 160, 161,
127, 127, 162, 163, 164 | ofrfval 7626 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → (((𝟭‘𝐼)‘{𝑌}) ∘r ≤ 𝑓 ↔ ∀𝑥 ∈ 𝐼 (((𝟭‘𝐼)‘{𝑌})‘𝑥) ≤ (𝑓‘𝑥))) |
| 166 | 159, 165 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → ((𝟭‘𝐼)‘{𝑌}) ∘r ≤ 𝑓) |
| 167 | 96 | psrbagcon 21864 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ 𝐷 ∧ ((𝟭‘𝐼)‘{𝑌}):𝐼⟶ℕ0 ∧
((𝟭‘𝐼)‘{𝑌}) ∘r ≤ 𝑓) → ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ∈ 𝐷 ∧ (𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ∘r ≤ 𝑓)) |
| 168 | 167 | simpld 494 |
. . . . . . . . 9
⊢ ((𝑓 ∈ 𝐷 ∧ ((𝟭‘𝐼)‘{𝑌}):𝐼⟶ℕ0 ∧
((𝟭‘𝐼)‘{𝑌}) ∘r ≤ 𝑓) → (𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ∈ 𝐷) |
| 169 | 118, 126,
166, 168 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → (𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ∈ 𝐷) |
| 170 | 117, 169 | ffvelcdmd 7024 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))) ∈ (Base‘𝑅)) |
| 171 | 2, 3, 4, 93, 170 | grpridd 18885 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → (((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})))(+g‘𝑅)(0g‘𝑅)) = ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})))) |
| 172 | 98 | fveq1i 6829 |
. . . . . . . 8
⊢ ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))) = ((((𝐼extendVars𝑅)‘𝑌)‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))) |
| 173 | 172 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))) = ((((𝐼extendVars𝑅)‘𝑌)‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})))) |
| 174 | 5 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → 𝑅 ∈ Ring) |
| 175 | 36 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → 𝑌 ∈ 𝐼) |
| 176 | 113 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → (𝐸‘(𝐾 − 1)) ∈ (Base‘(𝐽 mPoly 𝑅))) |
| 177 | 26, 4, 127, 174, 175, 34, 99, 176, 169 | extvfvv 33585 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → ((((𝐼extendVars𝑅)‘𝑌)‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))) = if(((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0, ((𝐸‘(𝐾 − 1))‘((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)), (0g‘𝑅))) |
| 178 | 104, 107,
5, 111, 4, 8 | esplyfval3 33612 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐽eSymPoly𝑅)‘(𝐾 − 1)) = (𝑧 ∈ 𝐶 ↦ if((ran 𝑧 ⊆ {0, 1} ∧ (♯‘(𝑧 supp 0)) = (𝐾 − 1)), (1r‘𝑅), (0g‘𝑅)))) |
| 179 | 103, 178 | eqtrid 2780 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸‘(𝐾 − 1)) = (𝑧 ∈ 𝐶 ↦ if((ran 𝑧 ⊆ {0, 1} ∧ (♯‘(𝑧 supp 0)) = (𝐾 − 1)), (1r‘𝑅), (0g‘𝑅)))) |
| 180 | 179 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (𝐸‘(𝐾 − 1)) = (𝑧 ∈ 𝐶 ↦ if((ran 𝑧 ⊆ {0, 1} ∧ (♯‘(𝑧 supp 0)) = (𝐾 − 1)), (1r‘𝑅), (0g‘𝑅)))) |
| 181 | 51 | ad4antr 732 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑧 ⊆ {0, 1}) → (ran (𝑓 ↾ 𝐽) ∪ ran (𝑓 ↾ {𝑌})) = ran 𝑓) |
| 182 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) → 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) |
| 183 | 120 | ffnd 6657 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((𝟭‘𝐼)‘{𝑌}) Fn 𝐼) |
| 184 | 183 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → ((𝟭‘𝐼)‘{𝑌}) Fn 𝐼) |
| 185 | 32, 184, 23, 23, 162 | offn 7629 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) Fn 𝐼) |
| 186 | 185 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) → (𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) Fn 𝐼) |
| 187 | 106 | ad4antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) → 𝐽 ⊆ 𝐼) |
| 188 | 186, 187 | fnssresd 6610 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) → ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽) Fn 𝐽) |
| 189 | | fneq1 6577 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽) → (𝑧 Fn 𝐽 ↔ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽) Fn 𝐽)) |
| 190 | 189 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽) Fn 𝐽) → 𝑧 Fn 𝐽) |
| 191 | 182, 188,
190 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) → 𝑧 Fn 𝐽) |
| 192 | 32 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → 𝑓 Fn 𝐼) |
| 193 | 106 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → 𝐽 ⊆ 𝐼) |
| 194 | 192, 193 | fnssresd 6610 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (𝑓 ↾ 𝐽) Fn 𝐽) |
| 195 | 194 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) → (𝑓 ↾ 𝐽) Fn 𝐽) |
| 196 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) |
| 197 | 196 | fveq1d 6830 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → (𝑧‘𝑥) = (((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)‘𝑥)) |
| 198 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐽) |
| 199 | 198 | fvresd 6848 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → (((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)‘𝑥) = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑥)) |
| 200 | 192 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → 𝑓 Fn 𝐼) |
| 201 | 160 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((𝟭‘𝐼)‘{𝑌}) Fn 𝐼) |
| 202 | 201 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → ((𝟭‘𝐼)‘{𝑌}) Fn 𝐼) |
| 203 | 23 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → 𝐼 ∈ Fin) |
| 204 | 203 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → 𝐼 ∈ Fin) |
| 205 | 187 | sselda 3930 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐼) |
| 206 | | fnfvof 7633 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓 Fn 𝐼 ∧ ((𝟭‘𝐼)‘{𝑌}) Fn 𝐼) ∧ (𝐼 ∈ Fin ∧ 𝑥 ∈ 𝐼)) → ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑥) = ((𝑓‘𝑥) − (((𝟭‘𝐼)‘{𝑌})‘𝑥))) |
| 207 | 200, 202,
204, 205, 206 | syl22anc 838 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑥) = ((𝑓‘𝑥) − (((𝟭‘𝐼)‘{𝑌})‘𝑥))) |
| 208 | 37 | ad5antr 734 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → {𝑌} ⊆ 𝐼) |
| 209 | 198, 34 | eleqtrdi 2843 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ (𝐼 ∖ {𝑌})) |
| 210 | 204, 208,
209, 151 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → (((𝟭‘𝐼)‘{𝑌})‘𝑥) = 0) |
| 211 | 210 | oveq2d 7368 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → ((𝑓‘𝑥) − (((𝟭‘𝐼)‘{𝑌})‘𝑥)) = ((𝑓‘𝑥) − 0)) |
| 212 | 153 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → 𝑓:𝐼⟶ℕ0) |
| 213 | 212, 205 | ffvelcdmd 7024 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → (𝑓‘𝑥) ∈
ℕ0) |
| 214 | 213 | nn0cnd 12451 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → (𝑓‘𝑥) ∈ ℂ) |
| 215 | 214 | subid1d 11468 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → ((𝑓‘𝑥) − 0) = (𝑓‘𝑥)) |
| 216 | 198 | fvresd 6848 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → ((𝑓 ↾ 𝐽)‘𝑥) = (𝑓‘𝑥)) |
| 217 | 215, 216 | eqtr4d 2771 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → ((𝑓‘𝑥) − 0) = ((𝑓 ↾ 𝐽)‘𝑥)) |
| 218 | 207, 211,
217 | 3eqtrd 2772 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑥) = ((𝑓 ↾ 𝐽)‘𝑥)) |
| 219 | 197, 199,
218 | 3eqtrd 2772 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ 𝑥 ∈ 𝐽) → (𝑧‘𝑥) = ((𝑓 ↾ 𝐽)‘𝑥)) |
| 220 | 191, 195,
219 | eqfnfvd 6973 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) → 𝑧 = (𝑓 ↾ 𝐽)) |
| 221 | 220 | rneqd 5882 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) → ran 𝑧 = ran (𝑓 ↾ 𝐽)) |
| 222 | 221 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑧 ⊆ {0, 1}) → ran 𝑧 = ran (𝑓 ↾ 𝐽)) |
| 223 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑧 ⊆ {0, 1}) → ran 𝑧 ⊆ {0,
1}) |
| 224 | 222, 223 | eqsstrrd 3966 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑧 ⊆ {0, 1}) → ran (𝑓 ↾ 𝐽) ⊆ {0, 1}) |
| 225 | 52 | ad4antr 732 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑧 ⊆ {0, 1}) → Fun 𝑓) |
| 226 | 54 | ad4antr 732 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑧 ⊆ {0, 1}) → 𝑌 ∈ dom 𝑓) |
| 227 | 225, 226,
55 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑧 ⊆ {0, 1}) → ran (𝑓 ↾ {𝑌}) = {(𝑓‘𝑌)}) |
| 228 | 77 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (𝑓‘𝑌) ∈
ℕ0) |
| 229 | 228 | nn0cnd 12451 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (𝑓‘𝑌) ∈ ℂ) |
| 230 | 120, 36 | ffvelcdmd 7024 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (((𝟭‘𝐼)‘{𝑌})‘𝑌) ∈ {0, 1}) |
| 231 | 124, 230 | sseldd 3931 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (((𝟭‘𝐼)‘{𝑌})‘𝑌) ∈
ℕ0) |
| 232 | 231 | nn0cnd 12451 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝟭‘𝐼)‘{𝑌})‘𝑌) ∈ ℂ) |
| 233 | 232 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (((𝟭‘𝐼)‘{𝑌})‘𝑌) ∈ ℂ) |
| 234 | 175 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → 𝑌 ∈ 𝐼) |
| 235 | | fnfvof 7633 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓 Fn 𝐼 ∧ ((𝟭‘𝐼)‘{𝑌}) Fn 𝐼) ∧ (𝐼 ∈ Fin ∧ 𝑌 ∈ 𝐼)) → ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = ((𝑓‘𝑌) − (((𝟭‘𝐼)‘{𝑌})‘𝑌))) |
| 236 | 192, 201,
203, 234, 235 | syl22anc 838 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = ((𝑓‘𝑌) − (((𝟭‘𝐼)‘{𝑌})‘𝑌))) |
| 237 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) |
| 238 | 236, 237 | eqtr3d 2770 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((𝑓‘𝑌) − (((𝟭‘𝐼)‘{𝑌})‘𝑌)) = 0) |
| 239 | 229, 233,
238 | subeq0d 11487 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (𝑓‘𝑌) = (((𝟭‘𝐼)‘{𝑌})‘𝑌)) |
| 240 | | snidg 4612 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑌 ∈ 𝐼 → 𝑌 ∈ {𝑌}) |
| 241 | 36, 240 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑌 ∈ {𝑌}) |
| 242 | | ind1 32843 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐼 ∈ Fin ∧ {𝑌} ⊆ 𝐼 ∧ 𝑌 ∈ {𝑌}) → (((𝟭‘𝐼)‘{𝑌})‘𝑌) = 1) |
| 243 | 22, 37, 241, 242 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (((𝟭‘𝐼)‘{𝑌})‘𝑌) = 1) |
| 244 | 243 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (((𝟭‘𝐼)‘{𝑌})‘𝑌) = 1) |
| 245 | 239, 244 | eqtrd 2768 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (𝑓‘𝑌) = 1) |
| 246 | 245 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑧 ⊆ {0, 1}) → (𝑓‘𝑌) = 1) |
| 247 | 246 | sneqd 4587 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑧 ⊆ {0, 1}) → {(𝑓‘𝑌)} = {1}) |
| 248 | 227, 247 | eqtrd 2768 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑧 ⊆ {0, 1}) → ran (𝑓 ↾ {𝑌}) = {1}) |
| 249 | | snsspr2 4766 |
. . . . . . . . . . . . . . . 16
⊢ {1}
⊆ {0, 1} |
| 250 | 248, 249 | eqsstrdi 3975 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑧 ⊆ {0, 1}) → ran (𝑓 ↾ {𝑌}) ⊆ {0, 1}) |
| 251 | 224, 250 | unssd 4141 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑧 ⊆ {0, 1}) → (ran (𝑓 ↾ 𝐽) ∪ ran (𝑓 ↾ {𝑌})) ⊆ {0, 1}) |
| 252 | 181, 251 | eqsstrrd 3966 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑧 ⊆ {0, 1}) → ran 𝑓 ⊆ {0,
1}) |
| 253 | 220 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑓 ⊆ {0, 1}) → 𝑧 = (𝑓 ↾ 𝐽)) |
| 254 | 253 | rneqd 5882 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑓 ⊆ {0, 1}) → ran 𝑧 = ran (𝑓 ↾ 𝐽)) |
| 255 | | rnresss 5970 |
. . . . . . . . . . . . . . 15
⊢ ran
(𝑓 ↾ 𝐽) ⊆ ran 𝑓 |
| 256 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑓 ⊆ {0, 1}) → ran 𝑓 ⊆ {0,
1}) |
| 257 | 255, 256 | sstrid 3942 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑓 ⊆ {0, 1}) → ran (𝑓 ↾ 𝐽) ⊆ {0, 1}) |
| 258 | 254, 257 | eqsstrd 3965 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) ∧ ran 𝑓 ⊆ {0, 1}) → ran 𝑧 ⊆ {0,
1}) |
| 259 | 252, 258 | impbida 800 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) → (ran 𝑧 ⊆ {0, 1} ↔ ran 𝑓 ⊆ {0, 1})) |
| 260 | 220 | oveq1d 7367 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) → (𝑧 supp 0) = ((𝑓 ↾ 𝐽) supp 0)) |
| 261 | 260 | fveqeq2d 6836 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) → ((♯‘(𝑧 supp 0)) = (𝐾 − 1) ↔ (♯‘((𝑓 ↾ 𝐽) supp 0)) = (𝐾 − 1))) |
| 262 | 259, 261 | anbi12d 632 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) → ((ran 𝑧 ⊆ {0, 1} ∧ (♯‘(𝑧 supp 0)) = (𝐾 − 1)) ↔ (ran 𝑓 ⊆ {0, 1} ∧ (♯‘((𝑓 ↾ 𝐽) supp 0)) = (𝐾 − 1)))) |
| 263 | 262 | ifbid 4498 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ 𝑧 = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) → if((ran 𝑧 ⊆ {0, 1} ∧ (♯‘(𝑧 supp 0)) = (𝐾 − 1)), (1r‘𝑅), (0g‘𝑅)) = if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘((𝑓 ↾ 𝐽) supp 0)) = (𝐾 − 1)), (1r‘𝑅), (0g‘𝑅))) |
| 264 | | breq1 5096 |
. . . . . . . . . . . 12
⊢ (ℎ = ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽) → (ℎ finSupp 0 ↔ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽) finSupp 0)) |
| 265 | 24 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ℕ0 ∈
V) |
| 266 | 203, 193 | ssexd 5264 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → 𝐽 ∈ V) |
| 267 | 27, 169 | sselid 3928 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → (𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ∈ (ℕ0
↑m 𝐼)) |
| 268 | 267 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ∈ (ℕ0
↑m 𝐼)) |
| 269 | 203, 265,
268 | elmaprd 32665 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})):𝐼⟶ℕ0) |
| 270 | 269, 193 | fssresd 6695 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽):𝐽⟶ℕ0) |
| 271 | 265, 266,
270 | elmapdd 8771 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽) ∈ (ℕ0
↑m 𝐽)) |
| 272 | | breq1 5096 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) → (ℎ finSupp 0 ↔ (𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) finSupp 0)) |
| 273 | 169 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ∈ 𝐷) |
| 274 | 273, 26 | eleqtrdi 2843 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 275 | 272, 274 | elrabrd 32480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) finSupp 0) |
| 276 | 69 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → 0 ∈
ℕ0) |
| 277 | 275, 276 | fsuppres 9284 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽) finSupp 0) |
| 278 | 264, 271,
277 | elrabd 3645 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽) ∈ {ℎ ∈ (ℕ0
↑m 𝐽)
∣ ℎ finSupp
0}) |
| 279 | 278, 104 | eleqtrrdi 2844 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽) ∈ 𝐶) |
| 280 | 10 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 281 | 14 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 282 | 280, 281 | ifcld 4521 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘((𝑓 ↾ 𝐽) supp 0)) = (𝐾 − 1)), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 283 | 180, 263,
279, 282 | fvmptd 6942 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((𝐸‘(𝐾 − 1))‘((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) = if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘((𝑓 ↾ 𝐽) supp 0)) = (𝐾 − 1)), (1r‘𝑅), (0g‘𝑅))) |
| 284 | | eqcom 2740 |
. . . . . . . . . . . . 13
⊢ ((𝐾 − 1) =
(♯‘((𝑓 ↾
𝐽) supp 0)) ↔
(♯‘((𝑓 ↾
𝐽) supp 0)) = (𝐾 − 1)) |
| 285 | | fz1ssfz0 13525 |
. . . . . . . . . . . . . . . . . 18
⊢
(1...(♯‘𝐼)) ⊆ (0...(♯‘𝐼)) |
| 286 | | fz0ssnn0 13524 |
. . . . . . . . . . . . . . . . . 18
⊢
(0...(♯‘𝐼)) ⊆
ℕ0 |
| 287 | 285, 286 | sstri 3940 |
. . . . . . . . . . . . . . . . 17
⊢
(1...(♯‘𝐼)) ⊆
ℕ0 |
| 288 | 287, 108 | sselid 3928 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 289 | 288 | nn0cnd 12451 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 290 | 289 | ad3antrrr 730 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → 𝐾 ∈ ℂ) |
| 291 | | 1cnd 11114 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → 1 ∈
ℂ) |
| 292 | | c0ex 11113 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ∈
V |
| 293 | 292 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → 0 ∈ V) |
| 294 | 30, 23, 293 | fidmfisupp 9263 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → 𝑓 finSupp 0) |
| 295 | 294, 293 | fsuppres 9284 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (𝑓 ↾ 𝐽) finSupp 0) |
| 296 | 295 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (𝑓 ↾ 𝐽) finSupp 0) |
| 297 | 296 | fsuppimpd 9260 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((𝑓 ↾ 𝐽) supp 0) ∈ Fin) |
| 298 | | hashcl 14265 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 ↾ 𝐽) supp 0) ∈ Fin →
(♯‘((𝑓 ↾
𝐽) supp 0)) ∈
ℕ0) |
| 299 | 297, 298 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (♯‘((𝑓 ↾ 𝐽) supp 0)) ∈
ℕ0) |
| 300 | 299 | nn0cnd 12451 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (♯‘((𝑓 ↾ 𝐽) supp 0)) ∈ ℂ) |
| 301 | 290, 291,
300 | subadd2d 11498 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((𝐾 − 1) = (♯‘((𝑓 ↾ 𝐽) supp 0)) ↔ ((♯‘((𝑓 ↾ 𝐽) supp 0)) + 1) = 𝐾)) |
| 302 | 284, 301 | bitr3id 285 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((♯‘((𝑓 ↾ 𝐽) supp 0)) = (𝐾 − 1) ↔ ((♯‘((𝑓 ↾ 𝐽) supp 0)) + 1) = 𝐾)) |
| 303 | 72 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (𝑓 supp 0) = (((𝑓 ↾ 𝐽) supp 0) ∪ ((𝑓 ↾ {𝑌}) supp 0))) |
| 304 | 81 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((𝑓 ↾ {𝑌}) supp 0) = if((𝑓‘𝑌) = 0, ∅, {𝑌})) |
| 305 | | simplr 768 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ¬ (𝑓‘𝑌) = 0) |
| 306 | 305 | iffalsed 4485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → if((𝑓‘𝑌) = 0, ∅, {𝑌}) = {𝑌}) |
| 307 | 304, 306 | eqtrd 2768 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((𝑓 ↾ {𝑌}) supp 0) = {𝑌}) |
| 308 | 307 | uneq2d 4117 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (((𝑓 ↾ 𝐽) supp 0) ∪ ((𝑓 ↾ {𝑌}) supp 0)) = (((𝑓 ↾ 𝐽) supp 0) ∪ {𝑌})) |
| 309 | 303, 308 | eqtrd 2768 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (𝑓 supp 0) = (((𝑓 ↾ 𝐽) supp 0) ∪ {𝑌})) |
| 310 | 309 | fveq2d 6832 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (♯‘(𝑓 supp 0)) =
(♯‘(((𝑓 ↾
𝐽) supp 0) ∪ {𝑌}))) |
| 311 | | suppssdm 8113 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ↾ 𝐽) supp 0) ⊆ dom (𝑓 ↾ 𝐽) |
| 312 | | resdmss 6187 |
. . . . . . . . . . . . . . . . . 18
⊢ dom
(𝑓 ↾ 𝐽) ⊆ 𝐽 |
| 313 | 311, 312 | sstri 3940 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ↾ 𝐽) supp 0) ⊆ 𝐽 |
| 314 | 313 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((𝑓 ↾ 𝐽) supp 0) ⊆ 𝐽) |
| 315 | 34 | eqimssi 3991 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐽 ⊆ (𝐼 ∖ {𝑌}) |
| 316 | | ssdifsn 4739 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐽 ⊆ (𝐼 ∖ {𝑌}) ↔ (𝐽 ⊆ 𝐼 ∧ ¬ 𝑌 ∈ 𝐽)) |
| 317 | 315, 316 | mpbi 230 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐽 ⊆ 𝐼 ∧ ¬ 𝑌 ∈ 𝐽) |
| 318 | 317 | simpri 485 |
. . . . . . . . . . . . . . . . 17
⊢ ¬
𝑌 ∈ 𝐽 |
| 319 | 318 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ¬ 𝑌 ∈ 𝐽) |
| 320 | 314, 319 | ssneldd 3933 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ¬ 𝑌 ∈ ((𝑓 ↾ 𝐽) supp 0)) |
| 321 | | hashunsng 14301 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌 ∈ 𝐼 → ((((𝑓 ↾ 𝐽) supp 0) ∈ Fin ∧ ¬ 𝑌 ∈ ((𝑓 ↾ 𝐽) supp 0)) → (♯‘(((𝑓 ↾ 𝐽) supp 0) ∪ {𝑌})) = ((♯‘((𝑓 ↾ 𝐽) supp 0)) + 1))) |
| 322 | 321 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ ((𝑌 ∈ 𝐼 ∧ (((𝑓 ↾ 𝐽) supp 0) ∈ Fin ∧ ¬ 𝑌 ∈ ((𝑓 ↾ 𝐽) supp 0))) → (♯‘(((𝑓 ↾ 𝐽) supp 0) ∪ {𝑌})) = ((♯‘((𝑓 ↾ 𝐽) supp 0)) + 1)) |
| 323 | 234, 297,
320, 322 | syl12anc 836 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (♯‘(((𝑓 ↾ 𝐽) supp 0) ∪ {𝑌})) = ((♯‘((𝑓 ↾ 𝐽) supp 0)) + 1)) |
| 324 | 310, 323 | eqtrd 2768 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (♯‘(𝑓 supp 0)) =
((♯‘((𝑓 ↾
𝐽) supp 0)) +
1)) |
| 325 | 324 | eqeq1d 2735 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((♯‘(𝑓 supp 0)) = 𝐾 ↔ ((♯‘((𝑓 ↾ 𝐽) supp 0)) + 1) = 𝐾)) |
| 326 | 302, 325 | bitr4d 282 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((♯‘((𝑓 ↾ 𝐽) supp 0)) = (𝐾 − 1) ↔ (♯‘(𝑓 supp 0)) = 𝐾)) |
| 327 | 326 | anbi2d 630 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((ran 𝑓 ⊆ {0, 1} ∧ (♯‘((𝑓 ↾ 𝐽) supp 0)) = (𝐾 − 1)) ↔ (ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾))) |
| 328 | 327 | ifbid 4498 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘((𝑓 ↾ 𝐽) supp 0)) = (𝐾 − 1)), (1r‘𝑅), (0g‘𝑅)) = if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) |
| 329 | 283, 328 | eqtrd 2768 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ((𝐸‘(𝐾 − 1))‘((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)) = if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) |
| 330 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → ran 𝑓 ⊆ {0,
1}) |
| 331 | 161 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → 𝑓 Fn 𝐼) |
| 332 | 175 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → 𝑌 ∈ 𝐼) |
| 333 | 331, 332 | fnfvelrnd 7021 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → (𝑓‘𝑌) ∈ ran 𝑓) |
| 334 | 330, 333 | sseldd 3931 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → (𝑓‘𝑌) ∈ {0, 1}) |
| 335 | | simpllr 775 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → ¬ (𝑓‘𝑌) = 0) |
| 336 | 335 | neqned 2936 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → (𝑓‘𝑌) ≠ 0) |
| 337 | 77 | nn0cnd 12451 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (𝑓‘𝑌) ∈ ℂ) |
| 338 | 337 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → (𝑓‘𝑌) ∈ ℂ) |
| 339 | | 1cnd 11114 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → 1 ∈
ℂ) |
| 340 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) |
| 341 | 160 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) →
((𝟭‘𝐼)‘{𝑌}) Fn 𝐼) |
| 342 | 127 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → 𝐼 ∈ Fin) |
| 343 | 331, 341,
342, 332, 235 | syl22anc 838 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = ((𝑓‘𝑌) − (((𝟭‘𝐼)‘{𝑌})‘𝑌))) |
| 344 | 243 | ad4antr 732 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) →
(((𝟭‘𝐼)‘{𝑌})‘𝑌) = 1) |
| 345 | 344 | oveq2d 7368 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → ((𝑓‘𝑌) − (((𝟭‘𝐼)‘{𝑌})‘𝑌)) = ((𝑓‘𝑌) − 1)) |
| 346 | 343, 345 | eqtrd 2768 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = ((𝑓‘𝑌) − 1)) |
| 347 | 346 | eqeq1d 2735 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → (((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0 ↔ ((𝑓‘𝑌) − 1) = 0)) |
| 348 | 340, 347 | mtbid 324 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → ¬ ((𝑓‘𝑌) − 1) = 0) |
| 349 | | subeq0 11394 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓‘𝑌) ∈ ℂ ∧ 1 ∈ ℂ)
→ (((𝑓‘𝑌) − 1) = 0 ↔ (𝑓‘𝑌) = 1)) |
| 350 | 349 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓‘𝑌) ∈ ℂ ∧ 1 ∈ ℂ)
→ (¬ ((𝑓‘𝑌) − 1) = 0 ↔ ¬ (𝑓‘𝑌) = 1)) |
| 351 | 350 | biimpa 476 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓‘𝑌) ∈ ℂ ∧ 1 ∈ ℂ)
∧ ¬ ((𝑓‘𝑌) − 1) = 0) → ¬
(𝑓‘𝑌) = 1) |
| 352 | 338, 339,
348, 351 | syl21anc 837 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → ¬ (𝑓‘𝑌) = 1) |
| 353 | 352 | neqned 2936 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → (𝑓‘𝑌) ≠ 1) |
| 354 | 336, 353 | nelprd 4609 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) ∧ ran 𝑓 ⊆ {0, 1}) → ¬ (𝑓‘𝑌) ∈ {0, 1}) |
| 355 | 334, 354 | pm2.65da 816 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ¬ ran 𝑓 ⊆ {0, 1}) |
| 356 | 355 | intnanrd 489 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → ¬ (ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾)) |
| 357 | 356 | iffalsed 4485 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 358 | 357 | eqcomd 2739 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) ∧ ¬ ((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0) → (0g‘𝑅) = if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) |
| 359 | 329, 358 | ifeqda 4511 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → if(((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))‘𝑌) = 0, ((𝐸‘(𝐾 − 1))‘((𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})) ↾ 𝐽)), (0g‘𝑅)) = if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) |
| 360 | 173, 177,
359 | 3eqtrd 2772 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))) = if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) |
| 361 | 171, 360 | eqtrd 2768 |
. . . . 5
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ ¬ (𝑓‘𝑌) = 0) → (((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})))(+g‘𝑅)(0g‘𝑅)) = if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) |
| 362 | 92, 361 | ifeqda 4511 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → if((𝑓‘𝑌) = 0, ((0g‘𝑅)(+g‘𝑅)if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))), (((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})))(+g‘𝑅)(0g‘𝑅))) = if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) |
| 363 | 1, 362 | eqtrid 2780 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → (if((𝑓‘𝑌) = 0, (0g‘𝑅), ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))))(+g‘𝑅)if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))) = if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) |
| 364 | 363 | mpteq2dva 5186 |
. 2
⊢ (𝜑 → (𝑓 ∈ 𝐷 ↦ (if((𝑓‘𝑌) = 0, (0g‘𝑅), ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))))(+g‘𝑅)if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅)))) = (𝑓 ∈ 𝐷 ↦ if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)))) |
| 365 | | esplyind.p |
. . . 4
⊢ + =
(+g‘𝑊) |
| 366 | | esplyind.m |
. . . . 5
⊢ · =
(.r‘𝑊) |
| 367 | 94, 22, 5 | mplringd 21961 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ Ring) |
| 368 | | esplyind.v |
. . . . . 6
⊢ 𝑉 = (𝐼 mVar 𝑅) |
| 369 | 94, 368, 95, 22, 5, 36 | mvrcl 21930 |
. . . . 5
⊢ (𝜑 → (𝑉‘𝑌) ∈ (Base‘𝑊)) |
| 370 | 95, 366, 367, 369, 115 | ringcld 20180 |
. . . 4
⊢ (𝜑 → ((𝑉‘𝑌) · (𝐺‘(𝐸‘(𝐾 − 1)))) ∈ (Base‘𝑊)) |
| 371 | 97 | fveq1i 6829 |
. . . . 5
⊢ (𝐺‘(𝐸‘𝐾)) = (((𝐼extendVars𝑅)‘𝑌)‘(𝐸‘𝐾)) |
| 372 | 102 | fveq1i 6829 |
. . . . . . 7
⊢ (𝐸‘𝐾) = ((𝐽eSymPoly𝑅)‘𝐾) |
| 373 | 104, 107,
5, 288, 99 | esplympl 33607 |
. . . . . . 7
⊢ (𝜑 → ((𝐽eSymPoly𝑅)‘𝐾) ∈ (Base‘(𝐽 mPoly 𝑅))) |
| 374 | 372, 373 | eqeltrid 2837 |
. . . . . 6
⊢ (𝜑 → (𝐸‘𝐾) ∈ (Base‘(𝐽 mPoly 𝑅))) |
| 375 | 101, 374 | ffvelcdmd 7024 |
. . . . 5
⊢ (𝜑 → (((𝐼extendVars𝑅)‘𝑌)‘(𝐸‘𝐾)) ∈ (Base‘𝑊)) |
| 376 | 371, 375 | eqeltrid 2837 |
. . . 4
⊢ (𝜑 → (𝐺‘(𝐸‘𝐾)) ∈ (Base‘𝑊)) |
| 377 | 94, 95, 3, 365, 370, 376 | mpladd 21947 |
. . 3
⊢ (𝜑 → (((𝑉‘𝑌) · (𝐺‘(𝐸‘(𝐾 − 1)))) + (𝐺‘(𝐸‘𝐾))) = (((𝑉‘𝑌) · (𝐺‘(𝐸‘(𝐾 − 1)))) ∘f
(+g‘𝑅)(𝐺‘(𝐸‘𝐾)))) |
| 378 | 368 | fveq1i 6829 |
. . . . 5
⊢ (𝑉‘𝑌) = ((𝐼 mVar 𝑅)‘𝑌) |
| 379 | | eqid 2733 |
. . . . 5
⊢
((𝟭‘𝐼)‘{𝑌}) = ((𝟭‘𝐼)‘{𝑌}) |
| 380 | 94, 378, 95, 366, 4, 26, 379, 22, 36, 5, 115 | mplmulmvr 33590 |
. . . 4
⊢ (𝜑 → ((𝑉‘𝑌) · (𝐺‘(𝐸‘(𝐾 − 1)))) = (𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, (0g‘𝑅), ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})))))) |
| 381 | 97 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐺 = ((𝐼extendVars𝑅)‘𝑌)) |
| 382 | 104, 107,
5, 288, 4, 8 | esplyfval3 33612 |
. . . . . . 7
⊢ (𝜑 → ((𝐽eSymPoly𝑅)‘𝐾) = (𝑔 ∈ 𝐶 ↦ if((ran 𝑔 ⊆ {0, 1} ∧ (♯‘(𝑔 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)))) |
| 383 | 372, 382 | eqtrid 2780 |
. . . . . 6
⊢ (𝜑 → (𝐸‘𝐾) = (𝑔 ∈ 𝐶 ↦ if((ran 𝑔 ⊆ {0, 1} ∧ (♯‘(𝑔 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)))) |
| 384 | 381, 383 | fveq12d 6835 |
. . . . 5
⊢ (𝜑 → (𝐺‘(𝐸‘𝐾)) = (((𝐼extendVars𝑅)‘𝑌)‘(𝑔 ∈ 𝐶 ↦ if((ran 𝑔 ⊆ {0, 1} ∧ (♯‘(𝑔 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))))) |
| 385 | 382, 373 | eqeltrrd 2834 |
. . . . . 6
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ if((ran 𝑔 ⊆ {0, 1} ∧ (♯‘(𝑔 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) ∈ (Base‘(𝐽 mPoly 𝑅))) |
| 386 | 26, 4, 22, 5, 36, 34, 99, 385 | extvfv 33584 |
. . . . 5
⊢ (𝜑 → (((𝐼extendVars𝑅)‘𝑌)‘(𝑔 ∈ 𝐶 ↦ if((ran 𝑔 ⊆ {0, 1} ∧ (♯‘(𝑔 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)))) = (𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, ((𝑔 ∈ 𝐶 ↦ if((ran 𝑔 ⊆ {0, 1} ∧ (♯‘(𝑔 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)))‘(𝑓 ↾ 𝐽)), (0g‘𝑅)))) |
| 387 | | rneq 5880 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝑓 ↾ 𝐽) → ran 𝑔 = ran (𝑓 ↾ 𝐽)) |
| 388 | 387 | sseq1d 3962 |
. . . . . . . . . 10
⊢ (𝑔 = (𝑓 ↾ 𝐽) → (ran 𝑔 ⊆ {0, 1} ↔ ran (𝑓 ↾ 𝐽) ⊆ {0, 1})) |
| 389 | | oveq1 7359 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝑓 ↾ 𝐽) → (𝑔 supp 0) = ((𝑓 ↾ 𝐽) supp 0)) |
| 390 | 389 | fveqeq2d 6836 |
. . . . . . . . . 10
⊢ (𝑔 = (𝑓 ↾ 𝐽) → ((♯‘(𝑔 supp 0)) = 𝐾 ↔ (♯‘((𝑓 ↾ 𝐽) supp 0)) = 𝐾)) |
| 391 | 388, 390 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑔 = (𝑓 ↾ 𝐽) → ((ran 𝑔 ⊆ {0, 1} ∧ (♯‘(𝑔 supp 0)) = 𝐾) ↔ (ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾))) |
| 392 | 391 | ifbid 4498 |
. . . . . . . 8
⊢ (𝑔 = (𝑓 ↾ 𝐽) → if((ran 𝑔 ⊆ {0, 1} ∧ (♯‘(𝑔 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)) = if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) |
| 393 | | eqidd 2734 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → (𝑔 ∈ 𝐶 ↦ if((ran 𝑔 ⊆ {0, 1} ∧ (♯‘(𝑔 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) = (𝑔 ∈ 𝐶 ↦ if((ran 𝑔 ⊆ {0, 1} ∧ (♯‘(𝑔 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)))) |
| 394 | | breq1 5096 |
. . . . . . . . . 10
⊢ (ℎ = (𝑓 ↾ 𝐽) → (ℎ finSupp 0 ↔ (𝑓 ↾ 𝐽) finSupp 0)) |
| 395 | 24 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → ℕ0 ∈
V) |
| 396 | 107 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → 𝐽 ∈ Fin) |
| 397 | 30 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → 𝑓:𝐼⟶ℕ0) |
| 398 | 106 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → 𝐽 ⊆ 𝐼) |
| 399 | 397, 398 | fssresd 6695 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → (𝑓 ↾ 𝐽):𝐽⟶ℕ0) |
| 400 | 395, 396,
399 | elmapdd 8771 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → (𝑓 ↾ 𝐽) ∈ (ℕ0
↑m 𝐽)) |
| 401 | 295 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → (𝑓 ↾ 𝐽) finSupp 0) |
| 402 | 394, 400,
401 | elrabd 3645 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → (𝑓 ↾ 𝐽) ∈ {ℎ ∈ (ℕ0
↑m 𝐽)
∣ ℎ finSupp
0}) |
| 403 | 402, 104 | eleqtrrdi 2844 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → (𝑓 ↾ 𝐽) ∈ 𝐶) |
| 404 | | fvexd 6843 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → (1r‘𝑅) ∈ V) |
| 405 | | fvexd 6843 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → (0g‘𝑅) ∈ V) |
| 406 | 404, 405 | ifcld 4521 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)) ∈ V) |
| 407 | 392, 393,
403, 406 | fvmptd4 6959 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐷) ∧ (𝑓‘𝑌) = 0) → ((𝑔 ∈ 𝐶 ↦ if((ran 𝑔 ⊆ {0, 1} ∧ (♯‘(𝑔 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)))‘(𝑓 ↾ 𝐽)) = if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅))) |
| 408 | 407 | ifeq1da 4506 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → if((𝑓‘𝑌) = 0, ((𝑔 ∈ 𝐶 ↦ if((ran 𝑔 ⊆ {0, 1} ∧ (♯‘(𝑔 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)))‘(𝑓 ↾ 𝐽)), (0g‘𝑅)) = if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))) |
| 409 | 408 | mpteq2dva 5186 |
. . . . 5
⊢ (𝜑 → (𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, ((𝑔 ∈ 𝐶 ↦ if((ran 𝑔 ⊆ {0, 1} ∧ (♯‘(𝑔 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)))‘(𝑓 ↾ 𝐽)), (0g‘𝑅))) = (𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅)))) |
| 410 | 384, 386,
409 | 3eqtrd 2772 |
. . . 4
⊢ (𝜑 → (𝐺‘(𝐸‘𝐾)) = (𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅)))) |
| 411 | 380, 410 | oveq12d 7370 |
. . 3
⊢ (𝜑 → (((𝑉‘𝑌) · (𝐺‘(𝐸‘(𝐾 − 1)))) ∘f
(+g‘𝑅)(𝐺‘(𝐸‘𝐾))) = ((𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, (0g‘𝑅), ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))))) ∘f
(+g‘𝑅)(𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))))) |
| 412 | | ovex 7385 |
. . . . . 6
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 413 | 26, 412 | rabex2 5281 |
. . . . 5
⊢ 𝐷 ∈ V |
| 414 | 413 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ V) |
| 415 | | nfv 1915 |
. . . . 5
⊢
Ⅎ𝑓𝜑 |
| 416 | | fvexd 6843 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))) ∈ V) |
| 417 | 14, 416 | ifexd 4523 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → if((𝑓‘𝑌) = 0, (0g‘𝑅), ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌})))) ∈ V) |
| 418 | | eqid 2733 |
. . . . 5
⊢ (𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, (0g‘𝑅), ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))))) = (𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, (0g‘𝑅), ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))))) |
| 419 | 415, 417,
418 | fnmptd 6627 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, (0g‘𝑅), ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))))) Fn 𝐷) |
| 420 | 15, 14 | ifcld 4521 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐷) → if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 421 | | eqid 2733 |
. . . . 5
⊢ (𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))) = (𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))) |
| 422 | 415, 420,
421 | fnmptd 6627 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))) Fn 𝐷) |
| 423 | | ofmpteq 7639 |
. . . 4
⊢ ((𝐷 ∈ V ∧ (𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, (0g‘𝑅), ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))))) Fn 𝐷 ∧ (𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))) Fn 𝐷) → ((𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, (0g‘𝑅), ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))))) ∘f
(+g‘𝑅)(𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅)))) = (𝑓 ∈ 𝐷 ↦ (if((𝑓‘𝑌) = 0, (0g‘𝑅), ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))))(+g‘𝑅)if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))))) |
| 424 | 414, 419,
422, 423 | syl3anc 1373 |
. . 3
⊢ (𝜑 → ((𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, (0g‘𝑅), ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))))) ∘f
(+g‘𝑅)(𝑓 ∈ 𝐷 ↦ if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅)))) = (𝑓 ∈ 𝐷 ↦ (if((𝑓‘𝑌) = 0, (0g‘𝑅), ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))))(+g‘𝑅)if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))))) |
| 425 | 377, 411,
424 | 3eqtrd 2772 |
. 2
⊢ (𝜑 → (((𝑉‘𝑌) · (𝐺‘(𝐸‘(𝐾 − 1)))) + (𝐺‘(𝐸‘𝐾))) = (𝑓 ∈ 𝐷 ↦ (if((𝑓‘𝑌) = 0, (0g‘𝑅), ((𝐺‘(𝐸‘(𝐾 − 1)))‘(𝑓 ∘f −
((𝟭‘𝐼)‘{𝑌}))))(+g‘𝑅)if((𝑓‘𝑌) = 0, if((ran (𝑓 ↾ 𝐽) ⊆ {0, 1} ∧
(♯‘((𝑓 ↾
𝐽) supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))))) |
| 426 | 26, 22, 5, 288, 4, 8 | esplyfval3 33612 |
. 2
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) = (𝑓 ∈ 𝐷 ↦ if((ran 𝑓 ⊆ {0, 1} ∧ (♯‘(𝑓 supp 0)) = 𝐾), (1r‘𝑅), (0g‘𝑅)))) |
| 427 | 364, 425,
426 | 3eqtr4rd 2779 |
1
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) = (((𝑉‘𝑌) · (𝐺‘(𝐸‘(𝐾 − 1)))) + (𝐺‘(𝐸‘𝐾)))) |