| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eluni2f | Structured version Visualization version GIF version | ||
| Description: Membership in class union. Restricted quantifier version. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| eluni2f.1 | ⊢ Ⅎ𝑥𝐴 |
| eluni2f.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| eluni2f | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1862 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
| 2 | eluni2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | eluni2f.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | elunif 45177 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| 5 | df-rex 3058 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
| 6 | 1, 4, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 Ⅎwnfc 2880 ∃wrex 3057 ∪ cuni 4860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-rex 3058 df-v 3439 df-uni 4861 |
| This theorem is referenced by: smfresal 46948 smfpimbor1lem2 46959 |
| Copyright terms: Public domain | W3C validator |