Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eluni2f Structured version   Visualization version   GIF version

Theorem eluni2f 44256
Description: Membership in class union. Restricted quantifier version. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
eluni2f.1 𝑥𝐴
eluni2f.2 𝑥𝐵
Assertion
Ref Expression
eluni2f (𝐴 𝐵 ↔ ∃𝑥𝐵 𝐴𝑥)
Distinct variable group:   𝐴,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem eluni2f
StepHypRef Expression
1 exancom 1863 . 2 (∃𝑥(𝐴𝑥𝑥𝐵) ↔ ∃𝑥(𝑥𝐵𝐴𝑥))
2 eluni2f.1 . . 3 𝑥𝐴
3 eluni2f.2 . . 3 𝑥𝐵
42, 3elunif 44165 . 2 (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
5 df-rex 3070 . 2 (∃𝑥𝐵 𝐴𝑥 ↔ ∃𝑥(𝑥𝐵𝐴𝑥))
61, 4, 53bitr4i 303 1 (𝐴 𝐵 ↔ ∃𝑥𝐵 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1780  wcel 2105  wnfc 2882  wrex 3069   cuni 4908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-rex 3070  df-v 3475  df-uni 4909
This theorem is referenced by:  smfresal  45965  smfpimbor1lem2  45976
  Copyright terms: Public domain W3C validator