Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eluni2f | Structured version Visualization version GIF version |
Description: Membership in class union. Restricted quantifier version. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
eluni2f.1 | ⊢ Ⅎ𝑥𝐴 |
eluni2f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
eluni2f | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1864 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
2 | eluni2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | eluni2f.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | elunif 42559 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
5 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
6 | 1, 4, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 Ⅎwnfc 2887 ∃wrex 3065 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rex 3070 df-v 3434 df-uni 4840 |
This theorem is referenced by: smfresal 44322 smfpimbor1lem2 44333 |
Copyright terms: Public domain | W3C validator |