Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eluni2f Structured version   Visualization version   GIF version

Theorem eluni2f 42542
Description: Membership in class union. Restricted quantifier version. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
eluni2f.1 𝑥𝐴
eluni2f.2 𝑥𝐵
Assertion
Ref Expression
eluni2f (𝐴 𝐵 ↔ ∃𝑥𝐵 𝐴𝑥)
Distinct variable group:   𝐴,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem eluni2f
StepHypRef Expression
1 exancom 1865 . 2 (∃𝑥(𝐴𝑥𝑥𝐵) ↔ ∃𝑥(𝑥𝐵𝐴𝑥))
2 eluni2f.1 . . 3 𝑥𝐴
3 eluni2f.2 . . 3 𝑥𝐵
42, 3elunif 42448 . 2 (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
5 df-rex 3069 . 2 (∃𝑥𝐵 𝐴𝑥 ↔ ∃𝑥(𝑥𝐵𝐴𝑥))
61, 4, 53bitr4i 302 1 (𝐴 𝐵 ↔ ∃𝑥𝐵 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1783  wcel 2108  wnfc 2886  wrex 3064   cuni 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rex 3069  df-v 3424  df-uni 4837
This theorem is referenced by:  smfresal  44209  smfpimbor1lem2  44220
  Copyright terms: Public domain W3C validator