Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimbor1lem2 Structured version   Visualization version   GIF version

Theorem smfpimbor1lem2 46804
Description: Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimbor1lem2.s (𝜑𝑆 ∈ SAlg)
smfpimbor1lem2.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimbor1lem2.a 𝐷 = dom 𝐹
smfpimbor1lem2.j 𝐽 = (topGen‘ran (,))
smfpimbor1lem2.b 𝐵 = (SalGen‘𝐽)
smfpimbor1lem2.e (𝜑𝐸𝐵)
smfpimbor1lem2.p 𝑃 = (𝐹𝐸)
smfpimbor1lem2.t 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
Assertion
Ref Expression
smfpimbor1lem2 (𝜑𝑃 ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐷,𝑒   𝑒,𝐸   𝑒,𝐹   𝑒,𝐽   𝑆,𝑒   𝜑,𝑒
Allowed substitution hints:   𝐵(𝑒)   𝑃(𝑒)   𝑇(𝑒)

Proof of Theorem smfpimbor1lem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 smfpimbor1lem2.p . 2 𝑃 = (𝐹𝐸)
2 smfpimbor1lem2.j . . . . . . . 8 𝐽 = (topGen‘ran (,))
3 retop 24656 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2825 . . . . . . 7 𝐽 ∈ Top
54a1i 11 . . . . . 6 (𝜑𝐽 ∈ Top)
6 smfpimbor1lem2.b . . . . . 6 𝐵 = (SalGen‘𝐽)
7 smfpimbor1lem2.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
8 smfpimbor1lem2.f . . . . . . 7 (𝜑𝐹 ∈ (SMblFn‘𝑆))
9 smfpimbor1lem2.a . . . . . . 7 𝐷 = dom 𝐹
10 smfpimbor1lem2.t . . . . . . 7 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
117, 8, 9, 10smfresal 46793 . . . . . 6 (𝜑𝑇 ∈ SAlg)
127adantr 480 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝑆 ∈ SAlg)
138adantr 480 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝐹 ∈ (SMblFn‘𝑆))
14 simpr 484 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝑥𝐽)
1512, 13, 9, 2, 14, 10smfpimbor1lem1 46803 . . . . . . 7 ((𝜑𝑥𝐽) → 𝑥𝑇)
1615ssd 45081 . . . . . 6 (𝜑𝐽𝑇)
17 nfcv 2892 . . . . . . . . . . . . . 14 𝑒𝑥
18 nfrab1 3429 . . . . . . . . . . . . . . 15 𝑒{𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
1910, 18nfcxfr 2890 . . . . . . . . . . . . . 14 𝑒𝑇
2017, 19eluni2f 45104 . . . . . . . . . . . . 13 (𝑥 𝑇 ↔ ∃𝑒𝑇 𝑥𝑒)
2120biimpi 216 . . . . . . . . . . . 12 (𝑥 𝑇 → ∃𝑒𝑇 𝑥𝑒)
2219nfuni 4881 . . . . . . . . . . . . . 14 𝑒 𝑇
2317, 22nfel 2907 . . . . . . . . . . . . 13 𝑒 𝑥 𝑇
24 nfv 1914 . . . . . . . . . . . . 13 𝑒 𝑥 ∈ ℝ
2510eleq2i 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
2625biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
27 rabidim1 3431 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} → 𝑒 ∈ 𝒫 ℝ)
2826, 27syl 17 . . . . . . . . . . . . . . . . . 18 (𝑒𝑇𝑒 ∈ 𝒫 ℝ)
29 elpwi 4573 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ 𝒫 ℝ → 𝑒 ⊆ ℝ)
3028, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝑒𝑇𝑒 ⊆ ℝ)
3130adantr 480 . . . . . . . . . . . . . . . 16 ((𝑒𝑇𝑥𝑒) → 𝑒 ⊆ ℝ)
32 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑒𝑇𝑥𝑒) → 𝑥𝑒)
3331, 32sseldd 3950 . . . . . . . . . . . . . . 15 ((𝑒𝑇𝑥𝑒) → 𝑥 ∈ ℝ)
3433ex 412 . . . . . . . . . . . . . 14 (𝑒𝑇 → (𝑥𝑒𝑥 ∈ ℝ))
3534a1i 11 . . . . . . . . . . . . 13 (𝑥 𝑇 → (𝑒𝑇 → (𝑥𝑒𝑥 ∈ ℝ)))
3623, 24, 35rexlimd 3245 . . . . . . . . . . . 12 (𝑥 𝑇 → (∃𝑒𝑇 𝑥𝑒𝑥 ∈ ℝ))
3721, 36mpd 15 . . . . . . . . . . 11 (𝑥 𝑇𝑥 ∈ ℝ)
3837rgen 3047 . . . . . . . . . 10 𝑥 𝑇𝑥 ∈ ℝ
39 dfss3 3938 . . . . . . . . . 10 ( 𝑇 ⊆ ℝ ↔ ∀𝑥 𝑇𝑥 ∈ ℝ)
4038, 39mpbir 231 . . . . . . . . 9 𝑇 ⊆ ℝ
4140a1i 11 . . . . . . . 8 (𝜑 𝑇 ⊆ ℝ)
42 uniretop 24657 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
432eqcomi 2739 . . . . . . . . . . . . 13 (topGen‘ran (,)) = 𝐽
4443unieqi 4886 . . . . . . . . . . . 12 (topGen‘ran (,)) = 𝐽
4542, 44eqtr2i 2754 . . . . . . . . . . 11 𝐽 = ℝ
4645a1i 11 . . . . . . . . . 10 (𝜑 𝐽 = ℝ)
4746eqcomd 2736 . . . . . . . . 9 (𝜑 → ℝ = 𝐽)
4816unissd 4884 . . . . . . . . 9 (𝜑 𝐽 𝑇)
4947, 48eqsstrd 3984 . . . . . . . 8 (𝜑 → ℝ ⊆ 𝑇)
5041, 49eqssd 3967 . . . . . . 7 (𝜑 𝑇 = ℝ)
5150, 46eqtr4d 2768 . . . . . 6 (𝜑 𝑇 = 𝐽)
525, 6, 11, 16, 51salgenss 46341 . . . . 5 (𝜑𝐵𝑇)
53 smfpimbor1lem2.e . . . . 5 (𝜑𝐸𝐵)
5452, 53sseldd 3950 . . . 4 (𝜑𝐸𝑇)
55 imaeq2 6030 . . . . . 6 (𝑒 = 𝐸 → (𝐹𝑒) = (𝐹𝐸))
5655eleq1d 2814 . . . . 5 (𝑒 = 𝐸 → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹𝐸) ∈ (𝑆t 𝐷)))
5756, 10elrab2 3665 . . . 4 (𝐸𝑇 ↔ (𝐸 ∈ 𝒫 ℝ ∧ (𝐹𝐸) ∈ (𝑆t 𝐷)))
5854, 57sylib 218 . . 3 (𝜑 → (𝐸 ∈ 𝒫 ℝ ∧ (𝐹𝐸) ∈ (𝑆t 𝐷)))
5958simprd 495 . 2 (𝜑 → (𝐹𝐸) ∈ (𝑆t 𝐷))
601, 59eqeltrid 2833 1 (𝜑𝑃 ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  wss 3917  𝒫 cpw 4566   cuni 4874  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  cfv 6514  (class class class)co 7390  cr 11074  (,)cioo 13313  t crest 17390  topGenctg 17407  Topctop 22787  SAlgcsalg 46313  SalGencsalgen 46317  SMblFncsmblfn 46700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-ioo 13317  df-ico 13319  df-fl 13761  df-rest 17392  df-topgen 17413  df-top 22788  df-bases 22840  df-salg 46314  df-salgen 46318  df-smblfn 46701
This theorem is referenced by:  smfpimbor1  46805
  Copyright terms: Public domain W3C validator