Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimbor1lem2 Structured version   Visualization version   GIF version

Theorem smfpimbor1lem2 44008
Description: Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimbor1lem2.s (𝜑𝑆 ∈ SAlg)
smfpimbor1lem2.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimbor1lem2.a 𝐷 = dom 𝐹
smfpimbor1lem2.j 𝐽 = (topGen‘ran (,))
smfpimbor1lem2.b 𝐵 = (SalGen‘𝐽)
smfpimbor1lem2.e (𝜑𝐸𝐵)
smfpimbor1lem2.p 𝑃 = (𝐹𝐸)
smfpimbor1lem2.t 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
Assertion
Ref Expression
smfpimbor1lem2 (𝜑𝑃 ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐷,𝑒   𝑒,𝐸   𝑒,𝐹   𝑒,𝐽   𝑆,𝑒   𝜑,𝑒
Allowed substitution hints:   𝐵(𝑒)   𝑃(𝑒)   𝑇(𝑒)

Proof of Theorem smfpimbor1lem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 smfpimbor1lem2.p . 2 𝑃 = (𝐹𝐸)
2 smfpimbor1lem2.j . . . . . . . 8 𝐽 = (topGen‘ran (,))
3 retop 23659 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2834 . . . . . . 7 𝐽 ∈ Top
54a1i 11 . . . . . 6 (𝜑𝐽 ∈ Top)
6 smfpimbor1lem2.b . . . . . 6 𝐵 = (SalGen‘𝐽)
7 smfpimbor1lem2.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
8 smfpimbor1lem2.f . . . . . . 7 (𝜑𝐹 ∈ (SMblFn‘𝑆))
9 smfpimbor1lem2.a . . . . . . 7 𝐷 = dom 𝐹
10 smfpimbor1lem2.t . . . . . . 7 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
117, 8, 9, 10smfresal 43997 . . . . . 6 (𝜑𝑇 ∈ SAlg)
127adantr 484 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝑆 ∈ SAlg)
138adantr 484 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝐹 ∈ (SMblFn‘𝑆))
14 simpr 488 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝑥𝐽)
1512, 13, 9, 2, 14, 10smfpimbor1lem1 44007 . . . . . . 7 ((𝜑𝑥𝐽) → 𝑥𝑇)
1615ssd 42306 . . . . . 6 (𝜑𝐽𝑇)
17 nfcv 2904 . . . . . . . . . . . . . 14 𝑒𝑥
18 nfrab1 3296 . . . . . . . . . . . . . . 15 𝑒{𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
1910, 18nfcxfr 2902 . . . . . . . . . . . . . 14 𝑒𝑇
2017, 19eluni2f 42329 . . . . . . . . . . . . 13 (𝑥 𝑇 ↔ ∃𝑒𝑇 𝑥𝑒)
2120biimpi 219 . . . . . . . . . . . 12 (𝑥 𝑇 → ∃𝑒𝑇 𝑥𝑒)
2219nfuni 4826 . . . . . . . . . . . . . 14 𝑒 𝑇
2317, 22nfel 2918 . . . . . . . . . . . . 13 𝑒 𝑥 𝑇
24 nfv 1922 . . . . . . . . . . . . 13 𝑒 𝑥 ∈ ℝ
2510eleq2i 2829 . . . . . . . . . . . . . . . . . . . 20 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
2625biimpi 219 . . . . . . . . . . . . . . . . . . 19 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
27 rabidim1 3292 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} → 𝑒 ∈ 𝒫 ℝ)
2826, 27syl 17 . . . . . . . . . . . . . . . . . 18 (𝑒𝑇𝑒 ∈ 𝒫 ℝ)
29 elpwi 4522 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ 𝒫 ℝ → 𝑒 ⊆ ℝ)
3028, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝑒𝑇𝑒 ⊆ ℝ)
3130adantr 484 . . . . . . . . . . . . . . . 16 ((𝑒𝑇𝑥𝑒) → 𝑒 ⊆ ℝ)
32 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑒𝑇𝑥𝑒) → 𝑥𝑒)
3331, 32sseldd 3902 . . . . . . . . . . . . . . 15 ((𝑒𝑇𝑥𝑒) → 𝑥 ∈ ℝ)
3433ex 416 . . . . . . . . . . . . . 14 (𝑒𝑇 → (𝑥𝑒𝑥 ∈ ℝ))
3534a1i 11 . . . . . . . . . . . . 13 (𝑥 𝑇 → (𝑒𝑇 → (𝑥𝑒𝑥 ∈ ℝ)))
3623, 24, 35rexlimd 3236 . . . . . . . . . . . 12 (𝑥 𝑇 → (∃𝑒𝑇 𝑥𝑒𝑥 ∈ ℝ))
3721, 36mpd 15 . . . . . . . . . . 11 (𝑥 𝑇𝑥 ∈ ℝ)
3837rgen 3071 . . . . . . . . . 10 𝑥 𝑇𝑥 ∈ ℝ
39 dfss3 3888 . . . . . . . . . 10 ( 𝑇 ⊆ ℝ ↔ ∀𝑥 𝑇𝑥 ∈ ℝ)
4038, 39mpbir 234 . . . . . . . . 9 𝑇 ⊆ ℝ
4140a1i 11 . . . . . . . 8 (𝜑 𝑇 ⊆ ℝ)
42 uniretop 23660 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
432eqcomi 2746 . . . . . . . . . . . . 13 (topGen‘ran (,)) = 𝐽
4443unieqi 4832 . . . . . . . . . . . 12 (topGen‘ran (,)) = 𝐽
4542, 44eqtr2i 2766 . . . . . . . . . . 11 𝐽 = ℝ
4645a1i 11 . . . . . . . . . 10 (𝜑 𝐽 = ℝ)
4746eqcomd 2743 . . . . . . . . 9 (𝜑 → ℝ = 𝐽)
4816unissd 4829 . . . . . . . . 9 (𝜑 𝐽 𝑇)
4947, 48eqsstrd 3939 . . . . . . . 8 (𝜑 → ℝ ⊆ 𝑇)
5041, 49eqssd 3918 . . . . . . 7 (𝜑 𝑇 = ℝ)
5150, 46eqtr4d 2780 . . . . . 6 (𝜑 𝑇 = 𝐽)
525, 6, 11, 16, 51salgenss 43553 . . . . 5 (𝜑𝐵𝑇)
53 smfpimbor1lem2.e . . . . 5 (𝜑𝐸𝐵)
5452, 53sseldd 3902 . . . 4 (𝜑𝐸𝑇)
55 imaeq2 5925 . . . . . 6 (𝑒 = 𝐸 → (𝐹𝑒) = (𝐹𝐸))
5655eleq1d 2822 . . . . 5 (𝑒 = 𝐸 → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹𝐸) ∈ (𝑆t 𝐷)))
5756, 10elrab2 3605 . . . 4 (𝐸𝑇 ↔ (𝐸 ∈ 𝒫 ℝ ∧ (𝐹𝐸) ∈ (𝑆t 𝐷)))
5854, 57sylib 221 . . 3 (𝜑 → (𝐸 ∈ 𝒫 ℝ ∧ (𝐹𝐸) ∈ (𝑆t 𝐷)))
5958simprd 499 . 2 (𝜑 → (𝐹𝐸) ∈ (𝑆t 𝐷))
601, 59eqeltrid 2842 1 (𝜑𝑃 ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  {crab 3065  wss 3866  𝒫 cpw 4513   cuni 4819  ccnv 5550  dom cdm 5551  ran crn 5552  cima 5554  cfv 6380  (class class class)co 7213  cr 10728  (,)cioo 12935  t crest 16925  topGenctg 16942  Topctop 21790  SAlgcsalg 43527  SalGencsalgen 43531  SMblFncsmblfn 43911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cc 10049  ax-ac2 10077  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-acn 9558  df-ac 9730  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-ioo 12939  df-ico 12941  df-fl 13367  df-rest 16927  df-topgen 16948  df-top 21791  df-bases 21843  df-salg 43528  df-salgen 43532  df-smblfn 43912
This theorem is referenced by:  smfpimbor1  44009
  Copyright terms: Public domain W3C validator