Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfresal Structured version   Visualization version   GIF version

Theorem smfresal 45019
Description: Given a sigma-measurable function, the subsets of whose preimage is in the sigma-algebra induced by the function's domain, form a sigma-algebra. First part of the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfresal.s (𝜑𝑆 ∈ SAlg)
smfresal.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfresal.d 𝐷 = dom 𝐹
smfresal.t 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
Assertion
Ref Expression
smfresal (𝜑𝑇 ∈ SAlg)
Distinct variable groups:   𝐷,𝑒   𝑒,𝐹   𝑆,𝑒   𝜑,𝑒
Allowed substitution hint:   𝑇(𝑒)

Proof of Theorem smfresal
Dummy variables 𝑛 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfresal.t . . . 4 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
2 reex 11142 . . . . 5 ℝ ∈ V
32pwex 5335 . . . 4 𝒫 ℝ ∈ V
41, 3rabex2 5291 . . 3 𝑇 ∈ V
54a1i 11 . 2 (𝜑𝑇 ∈ V)
6 0elpw 5311 . . . . 5 ∅ ∈ 𝒫 ℝ
76a1i 11 . . . 4 (𝜑 → ∅ ∈ 𝒫 ℝ)
8 ima0 6029 . . . . . 6 (𝐹 “ ∅) = ∅
98a1i 11 . . . . 5 (𝜑 → (𝐹 “ ∅) = ∅)
10 smfresal.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
1110uniexd 7679 . . . . . . . 8 (𝜑 𝑆 ∈ V)
12 smfresal.f . . . . . . . . 9 (𝜑𝐹 ∈ (SMblFn‘𝑆))
13 smfresal.d . . . . . . . . 9 𝐷 = dom 𝐹
1410, 12, 13smfdmss 44964 . . . . . . . 8 (𝜑𝐷 𝑆)
1511, 14ssexd 5281 . . . . . . 7 (𝜑𝐷 ∈ V)
16 eqid 2736 . . . . . . 7 (𝑆t 𝐷) = (𝑆t 𝐷)
1710, 15, 16subsalsal 44590 . . . . . 6 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
18170sald 44581 . . . . 5 (𝜑 → ∅ ∈ (𝑆t 𝐷))
199, 18eqeltrd 2838 . . . 4 (𝜑 → (𝐹 “ ∅) ∈ (𝑆t 𝐷))
207, 19jca 512 . . 3 (𝜑 → (∅ ∈ 𝒫 ℝ ∧ (𝐹 “ ∅) ∈ (𝑆t 𝐷)))
21 imaeq2 6009 . . . . 5 (𝑒 = ∅ → (𝐹𝑒) = (𝐹 “ ∅))
2221eleq1d 2822 . . . 4 (𝑒 = ∅ → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ ∅) ∈ (𝑆t 𝐷)))
2322, 1elrab2 3648 . . 3 (∅ ∈ 𝑇 ↔ (∅ ∈ 𝒫 ℝ ∧ (𝐹 “ ∅) ∈ (𝑆t 𝐷)))
2420, 23sylibr 233 . 2 (𝜑 → ∅ ∈ 𝑇)
25 eqid 2736 . 2 𝑇 = 𝑇
26 nfv 1917 . . . . . . 7 𝑦𝜑
27 nfcv 2907 . . . . . . . . . . . . 13 𝑒𝑦
28 nfrab1 3426 . . . . . . . . . . . . . 14 𝑒{𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
291, 28nfcxfr 2905 . . . . . . . . . . . . 13 𝑒𝑇
3027, 29eluni2f 43303 . . . . . . . . . . . 12 (𝑦 𝑇 ↔ ∃𝑒𝑇 𝑦𝑒)
3130biimpi 215 . . . . . . . . . . 11 (𝑦 𝑇 → ∃𝑒𝑇 𝑦𝑒)
3231adantl 482 . . . . . . . . . 10 ((𝜑𝑦 𝑇) → ∃𝑒𝑇 𝑦𝑒)
33 nfv 1917 . . . . . . . . . . . 12 𝑒𝜑
3429nfuni 4872 . . . . . . . . . . . . 13 𝑒 𝑇
3527, 34nfel 2921 . . . . . . . . . . . 12 𝑒 𝑦 𝑇
3633, 35nfan 1902 . . . . . . . . . . 11 𝑒(𝜑𝑦 𝑇)
3727nfel1 2923 . . . . . . . . . . 11 𝑒 𝑦 ∈ ℝ
381eleq2i 2829 . . . . . . . . . . . . . . . . . 18 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
3938biimpi 215 . . . . . . . . . . . . . . . . 17 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
40 rabidim1 3428 . . . . . . . . . . . . . . . . 17 (𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} → 𝑒 ∈ 𝒫 ℝ)
4139, 40syl 17 . . . . . . . . . . . . . . . 16 (𝑒𝑇𝑒 ∈ 𝒫 ℝ)
42 elpwi 4567 . . . . . . . . . . . . . . . 16 (𝑒 ∈ 𝒫 ℝ → 𝑒 ⊆ ℝ)
4341, 42syl 17 . . . . . . . . . . . . . . 15 (𝑒𝑇𝑒 ⊆ ℝ)
4443adantr 481 . . . . . . . . . . . . . 14 ((𝑒𝑇𝑦𝑒) → 𝑒 ⊆ ℝ)
45 simpr 485 . . . . . . . . . . . . . 14 ((𝑒𝑇𝑦𝑒) → 𝑦𝑒)
4644, 45sseldd 3945 . . . . . . . . . . . . 13 ((𝑒𝑇𝑦𝑒) → 𝑦 ∈ ℝ)
4746ex 413 . . . . . . . . . . . 12 (𝑒𝑇 → (𝑦𝑒𝑦 ∈ ℝ))
4847a1i 11 . . . . . . . . . . 11 ((𝜑𝑦 𝑇) → (𝑒𝑇 → (𝑦𝑒𝑦 ∈ ℝ)))
4936, 37, 48rexlimd 3249 . . . . . . . . . 10 ((𝜑𝑦 𝑇) → (∃𝑒𝑇 𝑦𝑒𝑦 ∈ ℝ))
5032, 49mpd 15 . . . . . . . . 9 ((𝜑𝑦 𝑇) → 𝑦 ∈ ℝ)
5150ex 413 . . . . . . . 8 (𝜑 → (𝑦 𝑇𝑦 ∈ ℝ))
52 ovexd 7392 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ V)
53 ioossre 13325 . . . . . . . . . . . . . . . 16 ((𝑦 − 1)(,)(𝑦 + 1)) ⊆ ℝ
5453a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ⊆ ℝ)
5552, 54elpwd 4566 . . . . . . . . . . . . . 14 (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ)
5655adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ)
5710, 12, 13smff 44963 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐷⟶ℝ)
5857ffnd 6669 . . . . . . . . . . . . . . . 16 (𝜑𝐹 Fn 𝐷)
59 fncnvima2 7011 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝐷 → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))})
6058, 59syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))})
6160adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))})
62 nfv 1917 . . . . . . . . . . . . . . 15 𝑥(𝜑𝑦 ∈ ℝ)
6310adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 𝑆 ∈ SAlg)
6415adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 𝐷 ∈ V)
6557adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → 𝐹:𝐷⟶ℝ)
66 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → 𝑥𝐷)
6765, 66ffvelcdmd 7036 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
6867adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
6957feqmptd 6910 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥𝐷 ↦ (𝐹𝑥)))
7069eqcomd 2742 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥𝐷 ↦ (𝐹𝑥)) = 𝐹)
7170, 12eqeltrd 2838 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐷 ↦ (𝐹𝑥)) ∈ (SMblFn‘𝑆))
7271adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → (𝑥𝐷 ↦ (𝐹𝑥)) ∈ (SMblFn‘𝑆))
73 peano2rem 11468 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ)
7473rexrd 11205 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ*)
7574adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → (𝑦 − 1) ∈ ℝ*)
76 peano2re 11328 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
7776rexrd 11205 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ*)
7877adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 1) ∈ ℝ*)
7962, 63, 64, 68, 72, 75, 78smfpimioompt 45017 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))} ∈ (𝑆t 𝐷))
8061, 79eqeltrd 2838 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷))
8156, 80jca 512 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷)))
82 imaeq2 6009 . . . . . . . . . . . . . 14 (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → (𝐹𝑒) = (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))))
8382eleq1d 2822 . . . . . . . . . . . . 13 (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷)))
8483, 1elrab2 3648 . . . . . . . . . . . 12 (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇 ↔ (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷)))
8581, 84sylibr 233 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇)
86 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ)
87 ltm1 11997 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 − 1) < 𝑦)
88 ltp1 11995 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
8974, 77, 86, 87, 88eliood 43726 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1)))
9089adantl 482 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1)))
91 nfv 1917 . . . . . . . . . . . 12 𝑒 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))
92 nfcv 2907 . . . . . . . . . . . 12 𝑒((𝑦 − 1)(,)(𝑦 + 1))
93 eleq2 2826 . . . . . . . . . . . 12 (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → (𝑦𝑒𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))))
9491, 92, 29, 93rspcef 43270 . . . . . . . . . . 11 ((((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))) → ∃𝑒𝑇 𝑦𝑒)
9585, 90, 94syl2anc 584 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → ∃𝑒𝑇 𝑦𝑒)
9695, 30sylibr 233 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 𝑇)
9796ex 413 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ → 𝑦 𝑇))
9851, 97impbid 211 . . . . . . 7 (𝜑 → (𝑦 𝑇𝑦 ∈ ℝ))
9926, 98alrimi 2206 . . . . . 6 (𝜑 → ∀𝑦(𝑦 𝑇𝑦 ∈ ℝ))
100 dfcleq 2729 . . . . . 6 ( 𝑇 = ℝ ↔ ∀𝑦(𝑦 𝑇𝑦 ∈ ℝ))
10199, 100sylibr 233 . . . . 5 (𝜑 𝑇 = ℝ)
102101difeq1d 4081 . . . 4 (𝜑 → ( 𝑇𝑥) = (ℝ ∖ 𝑥))
103102adantr 481 . . 3 ((𝜑𝑥𝑇) → ( 𝑇𝑥) = (ℝ ∖ 𝑥))
104 difss 4091 . . . . . . 7 (ℝ ∖ 𝑥) ⊆ ℝ
1052, 104ssexi 5279 . . . . . . . 8 (ℝ ∖ 𝑥) ∈ V
106 elpwg 4563 . . . . . . . 8 ((ℝ ∖ 𝑥) ∈ V → ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ↔ (ℝ ∖ 𝑥) ⊆ ℝ))
107105, 106ax-mp 5 . . . . . . 7 ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ↔ (ℝ ∖ 𝑥) ⊆ ℝ)
108104, 107mpbir 230 . . . . . 6 (ℝ ∖ 𝑥) ∈ 𝒫 ℝ
109108a1i 11 . . . . 5 ((𝜑𝑥𝑇) → (ℝ ∖ 𝑥) ∈ 𝒫 ℝ)
11057ffund 6672 . . . . . . . . 9 (𝜑 → Fun 𝐹)
111 difpreima 7015 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ (ℝ ∖ 𝑥)) = ((𝐹 “ ℝ) ∖ (𝐹𝑥)))
112110, 111syl 17 . . . . . . . 8 (𝜑 → (𝐹 “ (ℝ ∖ 𝑥)) = ((𝐹 “ ℝ) ∖ (𝐹𝑥)))
113 fimacnv 6690 . . . . . . . . . . 11 (𝐹:𝐷⟶ℝ → (𝐹 “ ℝ) = 𝐷)
11457, 113syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ ℝ) = 𝐷)
11510, 14restuni4 43321 . . . . . . . . . 10 (𝜑 (𝑆t 𝐷) = 𝐷)
116114, 115eqtr4d 2779 . . . . . . . . 9 (𝜑 → (𝐹 “ ℝ) = (𝑆t 𝐷))
117116difeq1d 4081 . . . . . . . 8 (𝜑 → ((𝐹 “ ℝ) ∖ (𝐹𝑥)) = ( (𝑆t 𝐷) ∖ (𝐹𝑥)))
118112, 117eqtrd 2776 . . . . . . 7 (𝜑 → (𝐹 “ (ℝ ∖ 𝑥)) = ( (𝑆t 𝐷) ∖ (𝐹𝑥)))
119118adantr 481 . . . . . 6 ((𝜑𝑥𝑇) → (𝐹 “ (ℝ ∖ 𝑥)) = ( (𝑆t 𝐷) ∖ (𝐹𝑥)))
12017adantr 481 . . . . . . 7 ((𝜑𝑥𝑇) → (𝑆t 𝐷) ∈ SAlg)
121 imaeq2 6009 . . . . . . . . . . . 12 (𝑒 = 𝑥 → (𝐹𝑒) = (𝐹𝑥))
122121eleq1d 2822 . . . . . . . . . . 11 (𝑒 = 𝑥 → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹𝑥) ∈ (𝑆t 𝐷)))
123122, 1elrab2 3648 . . . . . . . . . 10 (𝑥𝑇 ↔ (𝑥 ∈ 𝒫 ℝ ∧ (𝐹𝑥) ∈ (𝑆t 𝐷)))
124123biimpi 215 . . . . . . . . 9 (𝑥𝑇 → (𝑥 ∈ 𝒫 ℝ ∧ (𝐹𝑥) ∈ (𝑆t 𝐷)))
125124simprd 496 . . . . . . . 8 (𝑥𝑇 → (𝐹𝑥) ∈ (𝑆t 𝐷))
126125adantl 482 . . . . . . 7 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ (𝑆t 𝐷))
127120, 126saldifcld 44578 . . . . . 6 ((𝜑𝑥𝑇) → ( (𝑆t 𝐷) ∖ (𝐹𝑥)) ∈ (𝑆t 𝐷))
128119, 127eqeltrd 2838 . . . . 5 ((𝜑𝑥𝑇) → (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷))
129109, 128jca 512 . . . 4 ((𝜑𝑥𝑇) → ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ∧ (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷)))
130 imaeq2 6009 . . . . . 6 (𝑒 = (ℝ ∖ 𝑥) → (𝐹𝑒) = (𝐹 “ (ℝ ∖ 𝑥)))
131130eleq1d 2822 . . . . 5 (𝑒 = (ℝ ∖ 𝑥) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷)))
132131, 1elrab2 3648 . . . 4 ((ℝ ∖ 𝑥) ∈ 𝑇 ↔ ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ∧ (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷)))
133129, 132sylibr 233 . . 3 ((𝜑𝑥𝑇) → (ℝ ∖ 𝑥) ∈ 𝑇)
134103, 133eqeltrd 2838 . 2 ((𝜑𝑥𝑇) → ( 𝑇𝑥) ∈ 𝑇)
135 nnex 12159 . . . . . . . 8 ℕ ∈ V
136 fvex 6855 . . . . . . . 8 (𝑔𝑛) ∈ V
137135, 136iunex 7901 . . . . . . 7 𝑛 ∈ ℕ (𝑔𝑛) ∈ V
138137a1i 11 . . . . . 6 (𝑔:ℕ⟶𝑇 𝑛 ∈ ℕ (𝑔𝑛) ∈ V)
139 ffvelcdm 7032 . . . . . . . 8 ((𝑔:ℕ⟶𝑇𝑛 ∈ ℕ) → (𝑔𝑛) ∈ 𝑇)
1401eleq2i 2829 . . . . . . . . . . 11 ((𝑔𝑛) ∈ 𝑇 ↔ (𝑔𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
141140biimpi 215 . . . . . . . . . 10 ((𝑔𝑛) ∈ 𝑇 → (𝑔𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
142 elrabi 3639 . . . . . . . . . 10 ((𝑔𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} → (𝑔𝑛) ∈ 𝒫 ℝ)
143141, 142syl 17 . . . . . . . . 9 ((𝑔𝑛) ∈ 𝑇 → (𝑔𝑛) ∈ 𝒫 ℝ)
144 elpwi 4567 . . . . . . . . 9 ((𝑔𝑛) ∈ 𝒫 ℝ → (𝑔𝑛) ⊆ ℝ)
145143, 144syl 17 . . . . . . . 8 ((𝑔𝑛) ∈ 𝑇 → (𝑔𝑛) ⊆ ℝ)
146139, 145syl 17 . . . . . . 7 ((𝑔:ℕ⟶𝑇𝑛 ∈ ℕ) → (𝑔𝑛) ⊆ ℝ)
147146iunssd 5010 . . . . . 6 (𝑔:ℕ⟶𝑇 𝑛 ∈ ℕ (𝑔𝑛) ⊆ ℝ)
148138, 147elpwd 4566 . . . . 5 (𝑔:ℕ⟶𝑇 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ)
149148adantl 482 . . . 4 ((𝜑𝑔:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ)
150 imaiun 7192 . . . . . 6 (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) = 𝑛 ∈ ℕ (𝐹 “ (𝑔𝑛))
151150a1i 11 . . . . 5 ((𝜑𝑔:ℕ⟶𝑇) → (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) = 𝑛 ∈ ℕ (𝐹 “ (𝑔𝑛)))
15217adantr 481 . . . . . 6 ((𝜑𝑔:ℕ⟶𝑇) → (𝑆t 𝐷) ∈ SAlg)
153 nnct 13886 . . . . . . 7 ℕ ≼ ω
154153a1i 11 . . . . . 6 ((𝜑𝑔:ℕ⟶𝑇) → ℕ ≼ ω)
155 imaeq2 6009 . . . . . . . . . . . 12 (𝑒 = (𝑔𝑛) → (𝐹𝑒) = (𝐹 “ (𝑔𝑛)))
156155eleq1d 2822 . . . . . . . . . . 11 (𝑒 = (𝑔𝑛) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
157156, 1elrab2 3648 . . . . . . . . . 10 ((𝑔𝑛) ∈ 𝑇 ↔ ((𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
158157biimpi 215 . . . . . . . . 9 ((𝑔𝑛) ∈ 𝑇 → ((𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
159158simprd 496 . . . . . . . 8 ((𝑔𝑛) ∈ 𝑇 → (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
160139, 159syl 17 . . . . . . 7 ((𝑔:ℕ⟶𝑇𝑛 ∈ ℕ) → (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
161160adantll 712 . . . . . 6 (((𝜑𝑔:ℕ⟶𝑇) ∧ 𝑛 ∈ ℕ) → (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
162152, 154, 161saliuncl 44554 . . . . 5 ((𝜑𝑔:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
163151, 162eqeltrd 2838 . . . 4 ((𝜑𝑔:ℕ⟶𝑇) → (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷))
164149, 163jca 512 . . 3 ((𝜑𝑔:ℕ⟶𝑇) → ( 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
165 imaeq2 6009 . . . . 5 (𝑒 = 𝑛 ∈ ℕ (𝑔𝑛) → (𝐹𝑒) = (𝐹 𝑛 ∈ ℕ (𝑔𝑛)))
166165eleq1d 2822 . . . 4 (𝑒 = 𝑛 ∈ ℕ (𝑔𝑛) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
167166, 1elrab2 3648 . . 3 ( 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝑇 ↔ ( 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
168164, 167sylibr 233 . 2 ((𝜑𝑔:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝑇)
1695, 24, 25, 134, 168issalnnd 44576 1 (𝜑𝑇 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wcel 2106  wrex 3073  {crab 3407  Vcvv 3445  cdif 3907  wss 3910  c0 4282  𝒫 cpw 4560   cuni 4865   ciun 4954   class class class wbr 5105  cmpt 5188  ccnv 5632  dom cdm 5633  cima 5636  Fun wfun 6490   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  ωcom 7802  cdom 8881  cr 11050  1c1 11052   + caddc 11054  *cxr 11188  cmin 11385  cn 12153  (,)cioo 13264  t crest 17302  SAlgcsalg 44539  SMblFncsmblfn 44926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-ioo 13268  df-ico 13270  df-fl 13697  df-rest 17304  df-salg 44540  df-smblfn 44927
This theorem is referenced by:  smfpimbor1lem1  45029  smfpimbor1lem2  45030
  Copyright terms: Public domain W3C validator