Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfresal Structured version   Visualization version   GIF version

Theorem smfresal 46099
Description: Given a sigma-measurable function, the subsets of ℝ whose preimage is in the sigma-algebra induced by the function's domain, form a sigma-algebra. First part of the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfresal.s (πœ‘ β†’ 𝑆 ∈ SAlg)
smfresal.f (πœ‘ β†’ 𝐹 ∈ (SMblFnβ€˜π‘†))
smfresal.d 𝐷 = dom 𝐹
smfresal.t 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (◑𝐹 β€œ 𝑒) ∈ (𝑆 β†Ύt 𝐷)}
Assertion
Ref Expression
smfresal (πœ‘ β†’ 𝑇 ∈ SAlg)
Distinct variable groups:   𝐷,𝑒   𝑒,𝐹   𝑆,𝑒   πœ‘,𝑒
Allowed substitution hint:   𝑇(𝑒)

Proof of Theorem smfresal
Dummy variables 𝑛 π‘₯ 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfresal.t . . . 4 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (◑𝐹 β€œ 𝑒) ∈ (𝑆 β†Ύt 𝐷)}
2 reex 11221 . . . . 5 ℝ ∈ V
32pwex 5374 . . . 4 𝒫 ℝ ∈ V
41, 3rabex2 5330 . . 3 𝑇 ∈ V
54a1i 11 . 2 (πœ‘ β†’ 𝑇 ∈ V)
6 0elpw 5350 . . . . 5 βˆ… ∈ 𝒫 ℝ
76a1i 11 . . . 4 (πœ‘ β†’ βˆ… ∈ 𝒫 ℝ)
8 ima0 6074 . . . . . 6 (◑𝐹 β€œ βˆ…) = βˆ…
98a1i 11 . . . . 5 (πœ‘ β†’ (◑𝐹 β€œ βˆ…) = βˆ…)
10 smfresal.s . . . . . . 7 (πœ‘ β†’ 𝑆 ∈ SAlg)
1110uniexd 7741 . . . . . . . 8 (πœ‘ β†’ βˆͺ 𝑆 ∈ V)
12 smfresal.f . . . . . . . . 9 (πœ‘ β†’ 𝐹 ∈ (SMblFnβ€˜π‘†))
13 smfresal.d . . . . . . . . 9 𝐷 = dom 𝐹
1410, 12, 13smfdmss 46044 . . . . . . . 8 (πœ‘ β†’ 𝐷 βŠ† βˆͺ 𝑆)
1511, 14ssexd 5318 . . . . . . 7 (πœ‘ β†’ 𝐷 ∈ V)
16 eqid 2727 . . . . . . 7 (𝑆 β†Ύt 𝐷) = (𝑆 β†Ύt 𝐷)
1710, 15, 16subsalsal 45670 . . . . . 6 (πœ‘ β†’ (𝑆 β†Ύt 𝐷) ∈ SAlg)
18170sald 45661 . . . . 5 (πœ‘ β†’ βˆ… ∈ (𝑆 β†Ύt 𝐷))
199, 18eqeltrd 2828 . . . 4 (πœ‘ β†’ (◑𝐹 β€œ βˆ…) ∈ (𝑆 β†Ύt 𝐷))
207, 19jca 511 . . 3 (πœ‘ β†’ (βˆ… ∈ 𝒫 ℝ ∧ (◑𝐹 β€œ βˆ…) ∈ (𝑆 β†Ύt 𝐷)))
21 imaeq2 6053 . . . . 5 (𝑒 = βˆ… β†’ (◑𝐹 β€œ 𝑒) = (◑𝐹 β€œ βˆ…))
2221eleq1d 2813 . . . 4 (𝑒 = βˆ… β†’ ((◑𝐹 β€œ 𝑒) ∈ (𝑆 β†Ύt 𝐷) ↔ (◑𝐹 β€œ βˆ…) ∈ (𝑆 β†Ύt 𝐷)))
2322, 1elrab2 3683 . . 3 (βˆ… ∈ 𝑇 ↔ (βˆ… ∈ 𝒫 ℝ ∧ (◑𝐹 β€œ βˆ…) ∈ (𝑆 β†Ύt 𝐷)))
2420, 23sylibr 233 . 2 (πœ‘ β†’ βˆ… ∈ 𝑇)
25 eqid 2727 . 2 βˆͺ 𝑇 = βˆͺ 𝑇
26 nfv 1910 . . . . . . 7 β„²π‘¦πœ‘
27 nfcv 2898 . . . . . . . . . . . . 13 Ⅎ𝑒𝑦
28 nfrab1 3446 . . . . . . . . . . . . . 14 Ⅎ𝑒{𝑒 ∈ 𝒫 ℝ ∣ (◑𝐹 β€œ 𝑒) ∈ (𝑆 β†Ύt 𝐷)}
291, 28nfcxfr 2896 . . . . . . . . . . . . 13 Ⅎ𝑒𝑇
3027, 29eluni2f 44392 . . . . . . . . . . . 12 (𝑦 ∈ βˆͺ 𝑇 ↔ βˆƒπ‘’ ∈ 𝑇 𝑦 ∈ 𝑒)
3130biimpi 215 . . . . . . . . . . 11 (𝑦 ∈ βˆͺ 𝑇 β†’ βˆƒπ‘’ ∈ 𝑇 𝑦 ∈ 𝑒)
3231adantl 481 . . . . . . . . . 10 ((πœ‘ ∧ 𝑦 ∈ βˆͺ 𝑇) β†’ βˆƒπ‘’ ∈ 𝑇 𝑦 ∈ 𝑒)
33 nfv 1910 . . . . . . . . . . . 12 β„²π‘’πœ‘
3429nfuni 4910 . . . . . . . . . . . . 13 Ⅎ𝑒βˆͺ 𝑇
3527, 34nfel 2912 . . . . . . . . . . . 12 Ⅎ𝑒 𝑦 ∈ βˆͺ 𝑇
3633, 35nfan 1895 . . . . . . . . . . 11 Ⅎ𝑒(πœ‘ ∧ 𝑦 ∈ βˆͺ 𝑇)
3727nfel1 2914 . . . . . . . . . . 11 Ⅎ𝑒 𝑦 ∈ ℝ
381eleq2i 2820 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ 𝑇 ↔ 𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◑𝐹 β€œ 𝑒) ∈ (𝑆 β†Ύt 𝐷)})
3938biimpi 215 . . . . . . . . . . . . . . . . 17 (𝑒 ∈ 𝑇 β†’ 𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◑𝐹 β€œ 𝑒) ∈ (𝑆 β†Ύt 𝐷)})
40 rabidim1 3448 . . . . . . . . . . . . . . . . 17 (𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◑𝐹 β€œ 𝑒) ∈ (𝑆 β†Ύt 𝐷)} β†’ 𝑒 ∈ 𝒫 ℝ)
4139, 40syl 17 . . . . . . . . . . . . . . . 16 (𝑒 ∈ 𝑇 β†’ 𝑒 ∈ 𝒫 ℝ)
42 elpwi 4605 . . . . . . . . . . . . . . . 16 (𝑒 ∈ 𝒫 ℝ β†’ 𝑒 βŠ† ℝ)
4341, 42syl 17 . . . . . . . . . . . . . . 15 (𝑒 ∈ 𝑇 β†’ 𝑒 βŠ† ℝ)
4443adantr 480 . . . . . . . . . . . . . 14 ((𝑒 ∈ 𝑇 ∧ 𝑦 ∈ 𝑒) β†’ 𝑒 βŠ† ℝ)
45 simpr 484 . . . . . . . . . . . . . 14 ((𝑒 ∈ 𝑇 ∧ 𝑦 ∈ 𝑒) β†’ 𝑦 ∈ 𝑒)
4644, 45sseldd 3979 . . . . . . . . . . . . 13 ((𝑒 ∈ 𝑇 ∧ 𝑦 ∈ 𝑒) β†’ 𝑦 ∈ ℝ)
4746ex 412 . . . . . . . . . . . 12 (𝑒 ∈ 𝑇 β†’ (𝑦 ∈ 𝑒 β†’ 𝑦 ∈ ℝ))
4847a1i 11 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑦 ∈ βˆͺ 𝑇) β†’ (𝑒 ∈ 𝑇 β†’ (𝑦 ∈ 𝑒 β†’ 𝑦 ∈ ℝ)))
4936, 37, 48rexlimd 3258 . . . . . . . . . 10 ((πœ‘ ∧ 𝑦 ∈ βˆͺ 𝑇) β†’ (βˆƒπ‘’ ∈ 𝑇 𝑦 ∈ 𝑒 β†’ 𝑦 ∈ ℝ))
5032, 49mpd 15 . . . . . . . . 9 ((πœ‘ ∧ 𝑦 ∈ βˆͺ 𝑇) β†’ 𝑦 ∈ ℝ)
5150ex 412 . . . . . . . 8 (πœ‘ β†’ (𝑦 ∈ βˆͺ 𝑇 β†’ 𝑦 ∈ ℝ))
52 ovexd 7449 . . . . . . . . . . . . . . 15 (πœ‘ β†’ ((𝑦 βˆ’ 1)(,)(𝑦 + 1)) ∈ V)
53 ioossre 13409 . . . . . . . . . . . . . . . 16 ((𝑦 βˆ’ 1)(,)(𝑦 + 1)) βŠ† ℝ
5453a1i 11 . . . . . . . . . . . . . . 15 (πœ‘ β†’ ((𝑦 βˆ’ 1)(,)(𝑦 + 1)) βŠ† ℝ)
5552, 54elpwd 4604 . . . . . . . . . . . . . 14 (πœ‘ β†’ ((𝑦 βˆ’ 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ)
5655adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑦 ∈ ℝ) β†’ ((𝑦 βˆ’ 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ)
5710, 12, 13smff 46043 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 𝐹:π·βŸΆβ„)
5857ffnd 6717 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝐹 Fn 𝐷)
59 fncnvima2 7064 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝐷 β†’ (◑𝐹 β€œ ((𝑦 βˆ’ 1)(,)(𝑦 + 1))) = {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) ∈ ((𝑦 βˆ’ 1)(,)(𝑦 + 1))})
6058, 59syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (◑𝐹 β€œ ((𝑦 βˆ’ 1)(,)(𝑦 + 1))) = {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) ∈ ((𝑦 βˆ’ 1)(,)(𝑦 + 1))})
6160adantr 480 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑦 ∈ ℝ) β†’ (◑𝐹 β€œ ((𝑦 βˆ’ 1)(,)(𝑦 + 1))) = {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) ∈ ((𝑦 βˆ’ 1)(,)(𝑦 + 1))})
62 nfv 1910 . . . . . . . . . . . . . . 15 β„²π‘₯(πœ‘ ∧ 𝑦 ∈ ℝ)
6310adantr 480 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑦 ∈ ℝ) β†’ 𝑆 ∈ SAlg)
6415adantr 480 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑦 ∈ ℝ) β†’ 𝐷 ∈ V)
6557adantr 480 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ π‘₯ ∈ 𝐷) β†’ 𝐹:π·βŸΆβ„)
66 simpr 484 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ π‘₯ ∈ 𝐷) β†’ π‘₯ ∈ 𝐷)
6765, 66ffvelcdmd 7089 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘₯ ∈ 𝐷) β†’ (πΉβ€˜π‘₯) ∈ ℝ)
6867adantlr 714 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑦 ∈ ℝ) ∧ π‘₯ ∈ 𝐷) β†’ (πΉβ€˜π‘₯) ∈ ℝ)
6957feqmptd 6961 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐷 ↦ (πΉβ€˜π‘₯)))
7069eqcomd 2733 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (π‘₯ ∈ 𝐷 ↦ (πΉβ€˜π‘₯)) = 𝐹)
7170, 12eqeltrd 2828 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (π‘₯ ∈ 𝐷 ↦ (πΉβ€˜π‘₯)) ∈ (SMblFnβ€˜π‘†))
7271adantr 480 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑦 ∈ ℝ) β†’ (π‘₯ ∈ 𝐷 ↦ (πΉβ€˜π‘₯)) ∈ (SMblFnβ€˜π‘†))
73 peano2rem 11549 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ β†’ (𝑦 βˆ’ 1) ∈ ℝ)
7473rexrd 11286 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ β†’ (𝑦 βˆ’ 1) ∈ ℝ*)
7574adantl 481 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑦 ∈ ℝ) β†’ (𝑦 βˆ’ 1) ∈ ℝ*)
76 peano2re 11409 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ β†’ (𝑦 + 1) ∈ ℝ)
7776rexrd 11286 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ β†’ (𝑦 + 1) ∈ ℝ*)
7877adantl 481 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑦 ∈ ℝ) β†’ (𝑦 + 1) ∈ ℝ*)
7962, 63, 64, 68, 72, 75, 78smfpimioompt 46097 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑦 ∈ ℝ) β†’ {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) ∈ ((𝑦 βˆ’ 1)(,)(𝑦 + 1))} ∈ (𝑆 β†Ύt 𝐷))
8061, 79eqeltrd 2828 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑦 ∈ ℝ) β†’ (◑𝐹 β€œ ((𝑦 βˆ’ 1)(,)(𝑦 + 1))) ∈ (𝑆 β†Ύt 𝐷))
8156, 80jca 511 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑦 ∈ ℝ) β†’ (((𝑦 βˆ’ 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ ∧ (◑𝐹 β€œ ((𝑦 βˆ’ 1)(,)(𝑦 + 1))) ∈ (𝑆 β†Ύt 𝐷)))
82 imaeq2 6053 . . . . . . . . . . . . . 14 (𝑒 = ((𝑦 βˆ’ 1)(,)(𝑦 + 1)) β†’ (◑𝐹 β€œ 𝑒) = (◑𝐹 β€œ ((𝑦 βˆ’ 1)(,)(𝑦 + 1))))
8382eleq1d 2813 . . . . . . . . . . . . 13 (𝑒 = ((𝑦 βˆ’ 1)(,)(𝑦 + 1)) β†’ ((◑𝐹 β€œ 𝑒) ∈ (𝑆 β†Ύt 𝐷) ↔ (◑𝐹 β€œ ((𝑦 βˆ’ 1)(,)(𝑦 + 1))) ∈ (𝑆 β†Ύt 𝐷)))
8483, 1elrab2 3683 . . . . . . . . . . . 12 (((𝑦 βˆ’ 1)(,)(𝑦 + 1)) ∈ 𝑇 ↔ (((𝑦 βˆ’ 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ ∧ (◑𝐹 β€œ ((𝑦 βˆ’ 1)(,)(𝑦 + 1))) ∈ (𝑆 β†Ύt 𝐷)))
8581, 84sylibr 233 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑦 ∈ ℝ) β†’ ((𝑦 βˆ’ 1)(,)(𝑦 + 1)) ∈ 𝑇)
86 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ β†’ 𝑦 ∈ ℝ)
87 ltm1 12078 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ β†’ (𝑦 βˆ’ 1) < 𝑦)
88 ltp1 12076 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ β†’ 𝑦 < (𝑦 + 1))
8974, 77, 86, 87, 88eliood 44806 . . . . . . . . . . . 12 (𝑦 ∈ ℝ β†’ 𝑦 ∈ ((𝑦 βˆ’ 1)(,)(𝑦 + 1)))
9089adantl 481 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑦 ∈ ℝ) β†’ 𝑦 ∈ ((𝑦 βˆ’ 1)(,)(𝑦 + 1)))
91 nfv 1910 . . . . . . . . . . . 12 Ⅎ𝑒 𝑦 ∈ ((𝑦 βˆ’ 1)(,)(𝑦 + 1))
92 nfcv 2898 . . . . . . . . . . . 12 Ⅎ𝑒((𝑦 βˆ’ 1)(,)(𝑦 + 1))
93 eleq2 2817 . . . . . . . . . . . 12 (𝑒 = ((𝑦 βˆ’ 1)(,)(𝑦 + 1)) β†’ (𝑦 ∈ 𝑒 ↔ 𝑦 ∈ ((𝑦 βˆ’ 1)(,)(𝑦 + 1))))
9491, 92, 29, 93rspcef 44359 . . . . . . . . . . 11 ((((𝑦 βˆ’ 1)(,)(𝑦 + 1)) ∈ 𝑇 ∧ 𝑦 ∈ ((𝑦 βˆ’ 1)(,)(𝑦 + 1))) β†’ βˆƒπ‘’ ∈ 𝑇 𝑦 ∈ 𝑒)
9585, 90, 94syl2anc 583 . . . . . . . . . 10 ((πœ‘ ∧ 𝑦 ∈ ℝ) β†’ βˆƒπ‘’ ∈ 𝑇 𝑦 ∈ 𝑒)
9695, 30sylibr 233 . . . . . . . . 9 ((πœ‘ ∧ 𝑦 ∈ ℝ) β†’ 𝑦 ∈ βˆͺ 𝑇)
9796ex 412 . . . . . . . 8 (πœ‘ β†’ (𝑦 ∈ ℝ β†’ 𝑦 ∈ βˆͺ 𝑇))
9851, 97impbid 211 . . . . . . 7 (πœ‘ β†’ (𝑦 ∈ βˆͺ 𝑇 ↔ 𝑦 ∈ ℝ))
9926, 98alrimi 2199 . . . . . 6 (πœ‘ β†’ βˆ€π‘¦(𝑦 ∈ βˆͺ 𝑇 ↔ 𝑦 ∈ ℝ))
100 dfcleq 2720 . . . . . 6 (βˆͺ 𝑇 = ℝ ↔ βˆ€π‘¦(𝑦 ∈ βˆͺ 𝑇 ↔ 𝑦 ∈ ℝ))
10199, 100sylibr 233 . . . . 5 (πœ‘ β†’ βˆͺ 𝑇 = ℝ)
102101difeq1d 4117 . . . 4 (πœ‘ β†’ (βˆͺ 𝑇 βˆ– π‘₯) = (ℝ βˆ– π‘₯))
103102adantr 480 . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝑇) β†’ (βˆͺ 𝑇 βˆ– π‘₯) = (ℝ βˆ– π‘₯))
104 difss 4127 . . . . . . 7 (ℝ βˆ– π‘₯) βŠ† ℝ
1052, 104ssexi 5316 . . . . . . . 8 (ℝ βˆ– π‘₯) ∈ V
106 elpwg 4601 . . . . . . . 8 ((ℝ βˆ– π‘₯) ∈ V β†’ ((ℝ βˆ– π‘₯) ∈ 𝒫 ℝ ↔ (ℝ βˆ– π‘₯) βŠ† ℝ))
107105, 106ax-mp 5 . . . . . . 7 ((ℝ βˆ– π‘₯) ∈ 𝒫 ℝ ↔ (ℝ βˆ– π‘₯) βŠ† ℝ)
108104, 107mpbir 230 . . . . . 6 (ℝ βˆ– π‘₯) ∈ 𝒫 ℝ
109108a1i 11 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑇) β†’ (ℝ βˆ– π‘₯) ∈ 𝒫 ℝ)
11057ffund 6720 . . . . . . . . 9 (πœ‘ β†’ Fun 𝐹)
111 difpreima 7068 . . . . . . . . 9 (Fun 𝐹 β†’ (◑𝐹 β€œ (ℝ βˆ– π‘₯)) = ((◑𝐹 β€œ ℝ) βˆ– (◑𝐹 β€œ π‘₯)))
112110, 111syl 17 . . . . . . . 8 (πœ‘ β†’ (◑𝐹 β€œ (ℝ βˆ– π‘₯)) = ((◑𝐹 β€œ ℝ) βˆ– (◑𝐹 β€œ π‘₯)))
113 fimacnv 6739 . . . . . . . . . . 11 (𝐹:π·βŸΆβ„ β†’ (◑𝐹 β€œ ℝ) = 𝐷)
11457, 113syl 17 . . . . . . . . . 10 (πœ‘ β†’ (◑𝐹 β€œ ℝ) = 𝐷)
11510, 14restuni4 44410 . . . . . . . . . 10 (πœ‘ β†’ βˆͺ (𝑆 β†Ύt 𝐷) = 𝐷)
116114, 115eqtr4d 2770 . . . . . . . . 9 (πœ‘ β†’ (◑𝐹 β€œ ℝ) = βˆͺ (𝑆 β†Ύt 𝐷))
117116difeq1d 4117 . . . . . . . 8 (πœ‘ β†’ ((◑𝐹 β€œ ℝ) βˆ– (◑𝐹 β€œ π‘₯)) = (βˆͺ (𝑆 β†Ύt 𝐷) βˆ– (◑𝐹 β€œ π‘₯)))
118112, 117eqtrd 2767 . . . . . . 7 (πœ‘ β†’ (◑𝐹 β€œ (ℝ βˆ– π‘₯)) = (βˆͺ (𝑆 β†Ύt 𝐷) βˆ– (◑𝐹 β€œ π‘₯)))
119118adantr 480 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑇) β†’ (◑𝐹 β€œ (ℝ βˆ– π‘₯)) = (βˆͺ (𝑆 β†Ύt 𝐷) βˆ– (◑𝐹 β€œ π‘₯)))
12017adantr 480 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝑇) β†’ (𝑆 β†Ύt 𝐷) ∈ SAlg)
121 imaeq2 6053 . . . . . . . . . . . 12 (𝑒 = π‘₯ β†’ (◑𝐹 β€œ 𝑒) = (◑𝐹 β€œ π‘₯))
122121eleq1d 2813 . . . . . . . . . . 11 (𝑒 = π‘₯ β†’ ((◑𝐹 β€œ 𝑒) ∈ (𝑆 β†Ύt 𝐷) ↔ (◑𝐹 β€œ π‘₯) ∈ (𝑆 β†Ύt 𝐷)))
123122, 1elrab2 3683 . . . . . . . . . 10 (π‘₯ ∈ 𝑇 ↔ (π‘₯ ∈ 𝒫 ℝ ∧ (◑𝐹 β€œ π‘₯) ∈ (𝑆 β†Ύt 𝐷)))
124123biimpi 215 . . . . . . . . 9 (π‘₯ ∈ 𝑇 β†’ (π‘₯ ∈ 𝒫 ℝ ∧ (◑𝐹 β€œ π‘₯) ∈ (𝑆 β†Ύt 𝐷)))
125124simprd 495 . . . . . . . 8 (π‘₯ ∈ 𝑇 β†’ (◑𝐹 β€œ π‘₯) ∈ (𝑆 β†Ύt 𝐷))
126125adantl 481 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝑇) β†’ (◑𝐹 β€œ π‘₯) ∈ (𝑆 β†Ύt 𝐷))
127120, 126saldifcld 45658 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑇) β†’ (βˆͺ (𝑆 β†Ύt 𝐷) βˆ– (◑𝐹 β€œ π‘₯)) ∈ (𝑆 β†Ύt 𝐷))
128119, 127eqeltrd 2828 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑇) β†’ (◑𝐹 β€œ (ℝ βˆ– π‘₯)) ∈ (𝑆 β†Ύt 𝐷))
129109, 128jca 511 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑇) β†’ ((ℝ βˆ– π‘₯) ∈ 𝒫 ℝ ∧ (◑𝐹 β€œ (ℝ βˆ– π‘₯)) ∈ (𝑆 β†Ύt 𝐷)))
130 imaeq2 6053 . . . . . 6 (𝑒 = (ℝ βˆ– π‘₯) β†’ (◑𝐹 β€œ 𝑒) = (◑𝐹 β€œ (ℝ βˆ– π‘₯)))
131130eleq1d 2813 . . . . 5 (𝑒 = (ℝ βˆ– π‘₯) β†’ ((◑𝐹 β€œ 𝑒) ∈ (𝑆 β†Ύt 𝐷) ↔ (◑𝐹 β€œ (ℝ βˆ– π‘₯)) ∈ (𝑆 β†Ύt 𝐷)))
132131, 1elrab2 3683 . . . 4 ((ℝ βˆ– π‘₯) ∈ 𝑇 ↔ ((ℝ βˆ– π‘₯) ∈ 𝒫 ℝ ∧ (◑𝐹 β€œ (ℝ βˆ– π‘₯)) ∈ (𝑆 β†Ύt 𝐷)))
133129, 132sylibr 233 . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝑇) β†’ (ℝ βˆ– π‘₯) ∈ 𝑇)
134103, 133eqeltrd 2828 . 2 ((πœ‘ ∧ π‘₯ ∈ 𝑇) β†’ (βˆͺ 𝑇 βˆ– π‘₯) ∈ 𝑇)
135 nnex 12240 . . . . . . . 8 β„• ∈ V
136 fvex 6904 . . . . . . . 8 (π‘”β€˜π‘›) ∈ V
137135, 136iunex 7966 . . . . . . 7 βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›) ∈ V
138137a1i 11 . . . . . 6 (𝑔:β„•βŸΆπ‘‡ β†’ βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›) ∈ V)
139 ffvelcdm 7085 . . . . . . . 8 ((𝑔:β„•βŸΆπ‘‡ ∧ 𝑛 ∈ β„•) β†’ (π‘”β€˜π‘›) ∈ 𝑇)
1401eleq2i 2820 . . . . . . . . . . 11 ((π‘”β€˜π‘›) ∈ 𝑇 ↔ (π‘”β€˜π‘›) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◑𝐹 β€œ 𝑒) ∈ (𝑆 β†Ύt 𝐷)})
141140biimpi 215 . . . . . . . . . 10 ((π‘”β€˜π‘›) ∈ 𝑇 β†’ (π‘”β€˜π‘›) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◑𝐹 β€œ 𝑒) ∈ (𝑆 β†Ύt 𝐷)})
142 elrabi 3674 . . . . . . . . . 10 ((π‘”β€˜π‘›) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◑𝐹 β€œ 𝑒) ∈ (𝑆 β†Ύt 𝐷)} β†’ (π‘”β€˜π‘›) ∈ 𝒫 ℝ)
143141, 142syl 17 . . . . . . . . 9 ((π‘”β€˜π‘›) ∈ 𝑇 β†’ (π‘”β€˜π‘›) ∈ 𝒫 ℝ)
144 elpwi 4605 . . . . . . . . 9 ((π‘”β€˜π‘›) ∈ 𝒫 ℝ β†’ (π‘”β€˜π‘›) βŠ† ℝ)
145143, 144syl 17 . . . . . . . 8 ((π‘”β€˜π‘›) ∈ 𝑇 β†’ (π‘”β€˜π‘›) βŠ† ℝ)
146139, 145syl 17 . . . . . . 7 ((𝑔:β„•βŸΆπ‘‡ ∧ 𝑛 ∈ β„•) β†’ (π‘”β€˜π‘›) βŠ† ℝ)
147146iunssd 5047 . . . . . 6 (𝑔:β„•βŸΆπ‘‡ β†’ βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›) βŠ† ℝ)
148138, 147elpwd 4604 . . . . 5 (𝑔:β„•βŸΆπ‘‡ β†’ βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›) ∈ 𝒫 ℝ)
149148adantl 481 . . . 4 ((πœ‘ ∧ 𝑔:β„•βŸΆπ‘‡) β†’ βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›) ∈ 𝒫 ℝ)
150 imaiun 7249 . . . . . 6 (◑𝐹 β€œ βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›)) = βˆͺ 𝑛 ∈ β„• (◑𝐹 β€œ (π‘”β€˜π‘›))
151150a1i 11 . . . . 5 ((πœ‘ ∧ 𝑔:β„•βŸΆπ‘‡) β†’ (◑𝐹 β€œ βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›)) = βˆͺ 𝑛 ∈ β„• (◑𝐹 β€œ (π‘”β€˜π‘›)))
15217adantr 480 . . . . . 6 ((πœ‘ ∧ 𝑔:β„•βŸΆπ‘‡) β†’ (𝑆 β†Ύt 𝐷) ∈ SAlg)
153 nnct 13970 . . . . . . 7 β„• β‰Ό Ο‰
154153a1i 11 . . . . . 6 ((πœ‘ ∧ 𝑔:β„•βŸΆπ‘‡) β†’ β„• β‰Ό Ο‰)
155 imaeq2 6053 . . . . . . . . . . . 12 (𝑒 = (π‘”β€˜π‘›) β†’ (◑𝐹 β€œ 𝑒) = (◑𝐹 β€œ (π‘”β€˜π‘›)))
156155eleq1d 2813 . . . . . . . . . . 11 (𝑒 = (π‘”β€˜π‘›) β†’ ((◑𝐹 β€œ 𝑒) ∈ (𝑆 β†Ύt 𝐷) ↔ (◑𝐹 β€œ (π‘”β€˜π‘›)) ∈ (𝑆 β†Ύt 𝐷)))
157156, 1elrab2 3683 . . . . . . . . . 10 ((π‘”β€˜π‘›) ∈ 𝑇 ↔ ((π‘”β€˜π‘›) ∈ 𝒫 ℝ ∧ (◑𝐹 β€œ (π‘”β€˜π‘›)) ∈ (𝑆 β†Ύt 𝐷)))
158157biimpi 215 . . . . . . . . 9 ((π‘”β€˜π‘›) ∈ 𝑇 β†’ ((π‘”β€˜π‘›) ∈ 𝒫 ℝ ∧ (◑𝐹 β€œ (π‘”β€˜π‘›)) ∈ (𝑆 β†Ύt 𝐷)))
159158simprd 495 . . . . . . . 8 ((π‘”β€˜π‘›) ∈ 𝑇 β†’ (◑𝐹 β€œ (π‘”β€˜π‘›)) ∈ (𝑆 β†Ύt 𝐷))
160139, 159syl 17 . . . . . . 7 ((𝑔:β„•βŸΆπ‘‡ ∧ 𝑛 ∈ β„•) β†’ (◑𝐹 β€œ (π‘”β€˜π‘›)) ∈ (𝑆 β†Ύt 𝐷))
161160adantll 713 . . . . . 6 (((πœ‘ ∧ 𝑔:β„•βŸΆπ‘‡) ∧ 𝑛 ∈ β„•) β†’ (◑𝐹 β€œ (π‘”β€˜π‘›)) ∈ (𝑆 β†Ύt 𝐷))
162152, 154, 161saliuncl 45634 . . . . 5 ((πœ‘ ∧ 𝑔:β„•βŸΆπ‘‡) β†’ βˆͺ 𝑛 ∈ β„• (◑𝐹 β€œ (π‘”β€˜π‘›)) ∈ (𝑆 β†Ύt 𝐷))
163151, 162eqeltrd 2828 . . . 4 ((πœ‘ ∧ 𝑔:β„•βŸΆπ‘‡) β†’ (◑𝐹 β€œ βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›)) ∈ (𝑆 β†Ύt 𝐷))
164149, 163jca 511 . . 3 ((πœ‘ ∧ 𝑔:β„•βŸΆπ‘‡) β†’ (βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›) ∈ 𝒫 ℝ ∧ (◑𝐹 β€œ βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›)) ∈ (𝑆 β†Ύt 𝐷)))
165 imaeq2 6053 . . . . 5 (𝑒 = βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›) β†’ (◑𝐹 β€œ 𝑒) = (◑𝐹 β€œ βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›)))
166165eleq1d 2813 . . . 4 (𝑒 = βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›) β†’ ((◑𝐹 β€œ 𝑒) ∈ (𝑆 β†Ύt 𝐷) ↔ (◑𝐹 β€œ βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›)) ∈ (𝑆 β†Ύt 𝐷)))
167166, 1elrab2 3683 . . 3 (βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›) ∈ 𝑇 ↔ (βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›) ∈ 𝒫 ℝ ∧ (◑𝐹 β€œ βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›)) ∈ (𝑆 β†Ύt 𝐷)))
168164, 167sylibr 233 . 2 ((πœ‘ ∧ 𝑔:β„•βŸΆπ‘‡) β†’ βˆͺ 𝑛 ∈ β„• (π‘”β€˜π‘›) ∈ 𝑇)
1695, 24, 25, 134, 168issalnnd 45656 1 (πœ‘ β†’ 𝑇 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395  βˆ€wal 1532   = wceq 1534   ∈ wcel 2099  βˆƒwrex 3065  {crab 3427  Vcvv 3469   βˆ– cdif 3941   βŠ† wss 3944  βˆ…c0 4318  π’« cpw 4598  βˆͺ cuni 4903  βˆͺ ciun 4991   class class class wbr 5142   ↦ cmpt 5225  β—‘ccnv 5671  dom cdm 5672   β€œ cima 5675  Fun wfun 6536   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7414  Ο‰com 7864   β‰Ό cdom 8953  β„cr 11129  1c1 11131   + caddc 11133  β„*cxr 11269   βˆ’ cmin 11466  β„•cn 12234  (,)cioo 13348   β†Ύt crest 17393  SAlgcsalg 45619  SMblFncsmblfn 46006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cc 10450  ax-ac2 10478  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-card 9954  df-acn 9957  df-ac 10131  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-n0 12495  df-z 12581  df-uz 12845  df-q 12955  df-rp 12999  df-ioo 13352  df-ico 13354  df-fl 13781  df-rest 17395  df-salg 45620  df-smblfn 46007
This theorem is referenced by:  smfpimbor1lem1  46109  smfpimbor1lem2  46110
  Copyright terms: Public domain W3C validator