Step | Hyp | Ref
| Expression |
1 | | smfresal.t |
. . . 4
⊢ 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} |
2 | | reex 10893 |
. . . . 5
⊢ ℝ
∈ V |
3 | 2 | pwex 5298 |
. . . 4
⊢ 𝒫
ℝ ∈ V |
4 | 1, 3 | rabex2 5253 |
. . 3
⊢ 𝑇 ∈ V |
5 | 4 | a1i 11 |
. 2
⊢ (𝜑 → 𝑇 ∈ V) |
6 | | 0elpw 5273 |
. . . . 5
⊢ ∅
∈ 𝒫 ℝ |
7 | 6 | a1i 11 |
. . . 4
⊢ (𝜑 → ∅ ∈ 𝒫
ℝ) |
8 | | ima0 5974 |
. . . . . 6
⊢ (◡𝐹 “ ∅) = ∅ |
9 | 8 | a1i 11 |
. . . . 5
⊢ (𝜑 → (◡𝐹 “ ∅) =
∅) |
10 | | smfresal.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ SAlg) |
11 | 10 | uniexd 7573 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝑆
∈ V) |
12 | | smfresal.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
13 | | smfresal.d |
. . . . . . . . 9
⊢ 𝐷 = dom 𝐹 |
14 | 10, 12, 13 | smfdmss 44156 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
15 | 11, 14 | ssexd 5243 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ V) |
16 | | eqid 2738 |
. . . . . . 7
⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) |
17 | 10, 15, 16 | subsalsal 43788 |
. . . . . 6
⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
18 | 17 | 0sald 43779 |
. . . . 5
⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐷)) |
19 | 9, 18 | eqeltrd 2839 |
. . . 4
⊢ (𝜑 → (◡𝐹 “ ∅) ∈ (𝑆 ↾t 𝐷)) |
20 | 7, 19 | jca 511 |
. . 3
⊢ (𝜑 → (∅ ∈ 𝒫
ℝ ∧ (◡𝐹 “ ∅) ∈ (𝑆 ↾t 𝐷))) |
21 | | imaeq2 5954 |
. . . . 5
⊢ (𝑒 = ∅ → (◡𝐹 “ 𝑒) = (◡𝐹 “ ∅)) |
22 | 21 | eleq1d 2823 |
. . . 4
⊢ (𝑒 = ∅ → ((◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷) ↔ (◡𝐹 “ ∅) ∈ (𝑆 ↾t 𝐷))) |
23 | 22, 1 | elrab2 3620 |
. . 3
⊢ (∅
∈ 𝑇 ↔ (∅
∈ 𝒫 ℝ ∧ (◡𝐹 “ ∅) ∈ (𝑆 ↾t 𝐷))) |
24 | 20, 23 | sylibr 233 |
. 2
⊢ (𝜑 → ∅ ∈ 𝑇) |
25 | | eqid 2738 |
. 2
⊢ ∪ 𝑇 =
∪ 𝑇 |
26 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑦𝜑 |
27 | | nfcv 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑒𝑦 |
28 | | nfrab1 3310 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑒{𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} |
29 | 1, 28 | nfcxfr 2904 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑒𝑇 |
30 | 27, 29 | eluni2f 42542 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ∪ 𝑇
↔ ∃𝑒 ∈
𝑇 𝑦 ∈ 𝑒) |
31 | 30 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ∪ 𝑇
→ ∃𝑒 ∈
𝑇 𝑦 ∈ 𝑒) |
32 | 31 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ 𝑇) → ∃𝑒 ∈ 𝑇 𝑦 ∈ 𝑒) |
33 | | nfv 1918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑒𝜑 |
34 | 29 | nfuni 4843 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑒∪ 𝑇 |
35 | 27, 34 | nfel 2920 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑒 𝑦 ∈ ∪ 𝑇 |
36 | 33, 35 | nfan 1903 |
. . . . . . . . . . 11
⊢
Ⅎ𝑒(𝜑 ∧ 𝑦 ∈ ∪ 𝑇) |
37 | 27 | nfel1 2922 |
. . . . . . . . . . 11
⊢
Ⅎ𝑒 𝑦 ∈ ℝ |
38 | 1 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 ∈ 𝑇 ↔ 𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)}) |
39 | 38 | biimpi 215 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 ∈ 𝑇 → 𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)}) |
40 | | rabidim1 3306 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} → 𝑒 ∈ 𝒫 ℝ) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 ∈ 𝑇 → 𝑒 ∈ 𝒫 ℝ) |
42 | | elpwi 4539 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 ∈ 𝒫 ℝ →
𝑒 ⊆
ℝ) |
43 | 41, 42 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 ∈ 𝑇 → 𝑒 ⊆ ℝ) |
44 | 43 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑒 ∈ 𝑇 ∧ 𝑦 ∈ 𝑒) → 𝑒 ⊆ ℝ) |
45 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑒 ∈ 𝑇 ∧ 𝑦 ∈ 𝑒) → 𝑦 ∈ 𝑒) |
46 | 44, 45 | sseldd 3918 |
. . . . . . . . . . . . 13
⊢ ((𝑒 ∈ 𝑇 ∧ 𝑦 ∈ 𝑒) → 𝑦 ∈ ℝ) |
47 | 46 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑒 ∈ 𝑇 → (𝑦 ∈ 𝑒 → 𝑦 ∈ ℝ)) |
48 | 47 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ 𝑇) → (𝑒 ∈ 𝑇 → (𝑦 ∈ 𝑒 → 𝑦 ∈ ℝ))) |
49 | 36, 37, 48 | rexlimd 3245 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ 𝑇) → (∃𝑒 ∈ 𝑇 𝑦 ∈ 𝑒 → 𝑦 ∈ ℝ)) |
50 | 32, 49 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ 𝑇) → 𝑦 ∈ ℝ) |
51 | 50 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ ∪ 𝑇 → 𝑦 ∈ ℝ)) |
52 | | ovexd 7290 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ V) |
53 | | ioossre 13069 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 − 1)(,)(𝑦 + 1)) ⊆
ℝ |
54 | 53 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ⊆ ℝ) |
55 | 52, 54 | elpwd 4538 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫
ℝ) |
56 | 55 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫
ℝ) |
57 | 10, 12, 13 | smff 44155 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
58 | 57 | ffnd 6585 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹 Fn 𝐷) |
59 | | fncnvima2 6920 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 Fn 𝐷 → (◡𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))}) |
60 | 58, 59 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (◡𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))}) |
61 | 60 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (◡𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))}) |
62 | | nfv 1918 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ ℝ) |
63 | 10 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑆 ∈ SAlg) |
64 | 15 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐷 ∈ V) |
65 | 57 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐹:𝐷⟶ℝ) |
66 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝐷) |
67 | 65, 66 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ) |
68 | 67 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ) |
69 | 57 | feqmptd 6819 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥))) |
70 | 69 | eqcomd 2744 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) = 𝐹) |
71 | 70, 12 | eqeltrd 2839 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) ∈ (SMblFn‘𝑆)) |
72 | 71 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) ∈ (SMblFn‘𝑆)) |
73 | | peano2rem 11218 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℝ → (𝑦 − 1) ∈
ℝ) |
74 | 73 | rexrd 10956 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ → (𝑦 − 1) ∈
ℝ*) |
75 | 74 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 − 1) ∈
ℝ*) |
76 | | peano2re 11078 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℝ → (𝑦 + 1) ∈
ℝ) |
77 | 76 | rexrd 10956 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ → (𝑦 + 1) ∈
ℝ*) |
78 | 77 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + 1) ∈
ℝ*) |
79 | 62, 63, 64, 68, 72, 75, 78 | smfpimioompt 44207 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))} ∈ (𝑆 ↾t 𝐷)) |
80 | 61, 79 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (◡𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆 ↾t 𝐷)) |
81 | 56, 80 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ ∧ (◡𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆 ↾t 𝐷))) |
82 | | imaeq2 5954 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → (◡𝐹 “ 𝑒) = (◡𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1)))) |
83 | 82 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → ((◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷) ↔ (◡𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆 ↾t 𝐷))) |
84 | 83, 1 | elrab2 3620 |
. . . . . . . . . . . 12
⊢ (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇 ↔ (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ ∧ (◡𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆 ↾t 𝐷))) |
85 | 81, 84 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇) |
86 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℝ) |
87 | | ltm1 11747 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ → (𝑦 − 1) < 𝑦) |
88 | | ltp1 11745 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1)) |
89 | 74, 77, 86, 87, 88 | eliood 42926 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))) |
90 | 89 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))) |
91 | | nfv 1918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑒 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1)) |
92 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑒((𝑦 − 1)(,)(𝑦 + 1)) |
93 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → (𝑦 ∈ 𝑒 ↔ 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1)))) |
94 | 91, 92, 29, 93 | rspcef 42509 |
. . . . . . . . . . 11
⊢ ((((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇 ∧ 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))) → ∃𝑒 ∈ 𝑇 𝑦 ∈ 𝑒) |
95 | 85, 90, 94 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ∃𝑒 ∈ 𝑇 𝑦 ∈ 𝑒) |
96 | 95, 30 | sylibr 233 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ∪ 𝑇) |
97 | 96 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ ℝ → 𝑦 ∈ ∪ 𝑇)) |
98 | 51, 97 | impbid 211 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ ∪ 𝑇 ↔ 𝑦 ∈ ℝ)) |
99 | 26, 98 | alrimi 2209 |
. . . . . 6
⊢ (𝜑 → ∀𝑦(𝑦 ∈ ∪ 𝑇 ↔ 𝑦 ∈ ℝ)) |
100 | | dfcleq 2731 |
. . . . . 6
⊢ (∪ 𝑇 =
ℝ ↔ ∀𝑦(𝑦 ∈ ∪ 𝑇 ↔ 𝑦 ∈ ℝ)) |
101 | 99, 100 | sylibr 233 |
. . . . 5
⊢ (𝜑 → ∪ 𝑇 =
ℝ) |
102 | 101 | difeq1d 4052 |
. . . 4
⊢ (𝜑 → (∪ 𝑇
∖ 𝑥) = (ℝ
∖ 𝑥)) |
103 | 102 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (∪ 𝑇 ∖ 𝑥) = (ℝ ∖ 𝑥)) |
104 | | difss 4062 |
. . . . . . 7
⊢ (ℝ
∖ 𝑥) ⊆
ℝ |
105 | 2, 104 | ssexi 5241 |
. . . . . . . 8
⊢ (ℝ
∖ 𝑥) ∈
V |
106 | | elpwg 4533 |
. . . . . . . 8
⊢ ((ℝ
∖ 𝑥) ∈ V →
((ℝ ∖ 𝑥) ∈
𝒫 ℝ ↔ (ℝ ∖ 𝑥) ⊆ ℝ)) |
107 | 105, 106 | ax-mp 5 |
. . . . . . 7
⊢ ((ℝ
∖ 𝑥) ∈ 𝒫
ℝ ↔ (ℝ ∖ 𝑥) ⊆ ℝ) |
108 | 104, 107 | mpbir 230 |
. . . . . 6
⊢ (ℝ
∖ 𝑥) ∈ 𝒫
ℝ |
109 | 108 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (ℝ ∖ 𝑥) ∈ 𝒫 ℝ) |
110 | 57 | ffund 6588 |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝐹) |
111 | | difpreima 6924 |
. . . . . . . . 9
⊢ (Fun
𝐹 → (◡𝐹 “ (ℝ ∖ 𝑥)) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ 𝑥))) |
112 | 110, 111 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (◡𝐹 “ (ℝ ∖ 𝑥)) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ 𝑥))) |
113 | | fimacnv 6606 |
. . . . . . . . . . 11
⊢ (𝐹:𝐷⟶ℝ → (◡𝐹 “ ℝ) = 𝐷) |
114 | 57, 113 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹 “ ℝ) = 𝐷) |
115 | 10, 14 | restuni4 42559 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ (𝑆
↾t 𝐷) =
𝐷) |
116 | 114, 115 | eqtr4d 2781 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝐹 “ ℝ) = ∪ (𝑆
↾t 𝐷)) |
117 | 116 | difeq1d 4052 |
. . . . . . . 8
⊢ (𝜑 → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ 𝑥)) = (∪ (𝑆 ↾t 𝐷) ∖ (◡𝐹 “ 𝑥))) |
118 | 112, 117 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (◡𝐹 “ (ℝ ∖ 𝑥)) = (∪ (𝑆 ↾t 𝐷) ∖ (◡𝐹 “ 𝑥))) |
119 | 118 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (◡𝐹 “ (ℝ ∖ 𝑥)) = (∪ (𝑆 ↾t 𝐷) ∖ (◡𝐹 “ 𝑥))) |
120 | 17 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑆 ↾t 𝐷) ∈ SAlg) |
121 | | imaeq2 5954 |
. . . . . . . . . . . 12
⊢ (𝑒 = 𝑥 → (◡𝐹 “ 𝑒) = (◡𝐹 “ 𝑥)) |
122 | 121 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝑥 → ((◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷) ↔ (◡𝐹 “ 𝑥) ∈ (𝑆 ↾t 𝐷))) |
123 | 122, 1 | elrab2 3620 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑇 ↔ (𝑥 ∈ 𝒫 ℝ ∧ (◡𝐹 “ 𝑥) ∈ (𝑆 ↾t 𝐷))) |
124 | 123 | biimpi 215 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑇 → (𝑥 ∈ 𝒫 ℝ ∧ (◡𝐹 “ 𝑥) ∈ (𝑆 ↾t 𝐷))) |
125 | 124 | simprd 495 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑇 → (◡𝐹 “ 𝑥) ∈ (𝑆 ↾t 𝐷)) |
126 | 125 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (◡𝐹 “ 𝑥) ∈ (𝑆 ↾t 𝐷)) |
127 | 120, 126 | saldifcld 43776 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (∪
(𝑆 ↾t
𝐷) ∖ (◡𝐹 “ 𝑥)) ∈ (𝑆 ↾t 𝐷)) |
128 | 119, 127 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (◡𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆 ↾t 𝐷)) |
129 | 109, 128 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ∧
(◡𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆 ↾t 𝐷))) |
130 | | imaeq2 5954 |
. . . . . 6
⊢ (𝑒 = (ℝ ∖ 𝑥) → (◡𝐹 “ 𝑒) = (◡𝐹 “ (ℝ ∖ 𝑥))) |
131 | 130 | eleq1d 2823 |
. . . . 5
⊢ (𝑒 = (ℝ ∖ 𝑥) → ((◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷) ↔ (◡𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆 ↾t 𝐷))) |
132 | 131, 1 | elrab2 3620 |
. . . 4
⊢ ((ℝ
∖ 𝑥) ∈ 𝑇 ↔ ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ∧
(◡𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆 ↾t 𝐷))) |
133 | 129, 132 | sylibr 233 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (ℝ ∖ 𝑥) ∈ 𝑇) |
134 | 103, 133 | eqeltrd 2839 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (∪ 𝑇 ∖ 𝑥) ∈ 𝑇) |
135 | | nnex 11909 |
. . . . . . . 8
⊢ ℕ
∈ V |
136 | | fvex 6769 |
. . . . . . . 8
⊢ (𝑔‘𝑛) ∈ V |
137 | 135, 136 | iunex 7784 |
. . . . . . 7
⊢ ∪ 𝑛 ∈ ℕ (𝑔‘𝑛) ∈ V |
138 | 137 | a1i 11 |
. . . . . 6
⊢ (𝑔:ℕ⟶𝑇 → ∪ 𝑛 ∈ ℕ (𝑔‘𝑛) ∈ V) |
139 | | ffvelrn 6941 |
. . . . . . . 8
⊢ ((𝑔:ℕ⟶𝑇 ∧ 𝑛 ∈ ℕ) → (𝑔‘𝑛) ∈ 𝑇) |
140 | 1 | eleq2i 2830 |
. . . . . . . . . . 11
⊢ ((𝑔‘𝑛) ∈ 𝑇 ↔ (𝑔‘𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)}) |
141 | 140 | biimpi 215 |
. . . . . . . . . 10
⊢ ((𝑔‘𝑛) ∈ 𝑇 → (𝑔‘𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)}) |
142 | | elrabi 3611 |
. . . . . . . . . 10
⊢ ((𝑔‘𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} → (𝑔‘𝑛) ∈ 𝒫 ℝ) |
143 | 141, 142 | syl 17 |
. . . . . . . . 9
⊢ ((𝑔‘𝑛) ∈ 𝑇 → (𝑔‘𝑛) ∈ 𝒫 ℝ) |
144 | | elpwi 4539 |
. . . . . . . . 9
⊢ ((𝑔‘𝑛) ∈ 𝒫 ℝ → (𝑔‘𝑛) ⊆ ℝ) |
145 | 143, 144 | syl 17 |
. . . . . . . 8
⊢ ((𝑔‘𝑛) ∈ 𝑇 → (𝑔‘𝑛) ⊆ ℝ) |
146 | 139, 145 | syl 17 |
. . . . . . 7
⊢ ((𝑔:ℕ⟶𝑇 ∧ 𝑛 ∈ ℕ) → (𝑔‘𝑛) ⊆ ℝ) |
147 | 146 | iunssd 4976 |
. . . . . 6
⊢ (𝑔:ℕ⟶𝑇 → ∪ 𝑛 ∈ ℕ (𝑔‘𝑛) ⊆ ℝ) |
148 | 138, 147 | elpwd 4538 |
. . . . 5
⊢ (𝑔:ℕ⟶𝑇 → ∪ 𝑛 ∈ ℕ (𝑔‘𝑛) ∈ 𝒫 ℝ) |
149 | 148 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑔:ℕ⟶𝑇) → ∪
𝑛 ∈ ℕ (𝑔‘𝑛) ∈ 𝒫 ℝ) |
150 | | imaiun 7100 |
. . . . . 6
⊢ (◡𝐹 “ ∪
𝑛 ∈ ℕ (𝑔‘𝑛)) = ∪
𝑛 ∈ ℕ (◡𝐹 “ (𝑔‘𝑛)) |
151 | 150 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔:ℕ⟶𝑇) → (◡𝐹 “ ∪
𝑛 ∈ ℕ (𝑔‘𝑛)) = ∪
𝑛 ∈ ℕ (◡𝐹 “ (𝑔‘𝑛))) |
152 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔:ℕ⟶𝑇) → (𝑆 ↾t 𝐷) ∈ SAlg) |
153 | | nnct 13629 |
. . . . . . 7
⊢ ℕ
≼ ω |
154 | 153 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔:ℕ⟶𝑇) → ℕ ≼
ω) |
155 | | imaeq2 5954 |
. . . . . . . . . . . 12
⊢ (𝑒 = (𝑔‘𝑛) → (◡𝐹 “ 𝑒) = (◡𝐹 “ (𝑔‘𝑛))) |
156 | 155 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑒 = (𝑔‘𝑛) → ((◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷) ↔ (◡𝐹 “ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷))) |
157 | 156, 1 | elrab2 3620 |
. . . . . . . . . 10
⊢ ((𝑔‘𝑛) ∈ 𝑇 ↔ ((𝑔‘𝑛) ∈ 𝒫 ℝ ∧ (◡𝐹 “ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷))) |
158 | 157 | biimpi 215 |
. . . . . . . . 9
⊢ ((𝑔‘𝑛) ∈ 𝑇 → ((𝑔‘𝑛) ∈ 𝒫 ℝ ∧ (◡𝐹 “ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷))) |
159 | 158 | simprd 495 |
. . . . . . . 8
⊢ ((𝑔‘𝑛) ∈ 𝑇 → (◡𝐹 “ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷)) |
160 | 139, 159 | syl 17 |
. . . . . . 7
⊢ ((𝑔:ℕ⟶𝑇 ∧ 𝑛 ∈ ℕ) → (◡𝐹 “ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷)) |
161 | 160 | adantll 710 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔:ℕ⟶𝑇) ∧ 𝑛 ∈ ℕ) → (◡𝐹 “ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷)) |
162 | 152, 154,
161 | saliuncl 43753 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔:ℕ⟶𝑇) → ∪
𝑛 ∈ ℕ (◡𝐹 “ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷)) |
163 | 151, 162 | eqeltrd 2839 |
. . . 4
⊢ ((𝜑 ∧ 𝑔:ℕ⟶𝑇) → (◡𝐹 “ ∪
𝑛 ∈ ℕ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷)) |
164 | 149, 163 | jca 511 |
. . 3
⊢ ((𝜑 ∧ 𝑔:ℕ⟶𝑇) → (∪ 𝑛 ∈ ℕ (𝑔‘𝑛) ∈ 𝒫 ℝ ∧ (◡𝐹 “ ∪
𝑛 ∈ ℕ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷))) |
165 | | imaeq2 5954 |
. . . . 5
⊢ (𝑒 = ∪ 𝑛 ∈ ℕ (𝑔‘𝑛) → (◡𝐹 “ 𝑒) = (◡𝐹 “ ∪
𝑛 ∈ ℕ (𝑔‘𝑛))) |
166 | 165 | eleq1d 2823 |
. . . 4
⊢ (𝑒 = ∪ 𝑛 ∈ ℕ (𝑔‘𝑛) → ((◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷) ↔ (◡𝐹 “ ∪
𝑛 ∈ ℕ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷))) |
167 | 166, 1 | elrab2 3620 |
. . 3
⊢ (∪ 𝑛 ∈ ℕ (𝑔‘𝑛) ∈ 𝑇 ↔ (∪
𝑛 ∈ ℕ (𝑔‘𝑛) ∈ 𝒫 ℝ ∧ (◡𝐹 “ ∪
𝑛 ∈ ℕ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷))) |
168 | 164, 167 | sylibr 233 |
. 2
⊢ ((𝜑 ∧ 𝑔:ℕ⟶𝑇) → ∪
𝑛 ∈ ℕ (𝑔‘𝑛) ∈ 𝑇) |
169 | 5, 24, 25, 134, 168 | issalnnd 43774 |
1
⊢ (𝜑 → 𝑇 ∈ SAlg) |