| Step | Hyp | Ref
| Expression |
| 1 | | smfresal.t |
. . . 4
⊢ 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} |
| 2 | | reex 11225 |
. . . . 5
⊢ ℝ
∈ V |
| 3 | 2 | pwex 5355 |
. . . 4
⊢ 𝒫
ℝ ∈ V |
| 4 | 1, 3 | rabex2 5316 |
. . 3
⊢ 𝑇 ∈ V |
| 5 | 4 | a1i 11 |
. 2
⊢ (𝜑 → 𝑇 ∈ V) |
| 6 | | 0elpw 5331 |
. . . . 5
⊢ ∅
∈ 𝒫 ℝ |
| 7 | 6 | a1i 11 |
. . . 4
⊢ (𝜑 → ∅ ∈ 𝒫
ℝ) |
| 8 | | ima0 6069 |
. . . . . 6
⊢ (◡𝐹 “ ∅) = ∅ |
| 9 | 8 | a1i 11 |
. . . . 5
⊢ (𝜑 → (◡𝐹 “ ∅) =
∅) |
| 10 | | smfresal.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 11 | 10 | uniexd 7741 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝑆
∈ V) |
| 12 | | smfresal.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| 13 | | smfresal.d |
. . . . . . . . 9
⊢ 𝐷 = dom 𝐹 |
| 14 | 10, 12, 13 | smfdmss 46729 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| 15 | 11, 14 | ssexd 5299 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ V) |
| 16 | | eqid 2736 |
. . . . . . 7
⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) |
| 17 | 10, 15, 16 | subsalsal 46355 |
. . . . . 6
⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
| 18 | 17 | 0sald 46346 |
. . . . 5
⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐷)) |
| 19 | 9, 18 | eqeltrd 2835 |
. . . 4
⊢ (𝜑 → (◡𝐹 “ ∅) ∈ (𝑆 ↾t 𝐷)) |
| 20 | 7, 19 | jca 511 |
. . 3
⊢ (𝜑 → (∅ ∈ 𝒫
ℝ ∧ (◡𝐹 “ ∅) ∈ (𝑆 ↾t 𝐷))) |
| 21 | | imaeq2 6048 |
. . . . 5
⊢ (𝑒 = ∅ → (◡𝐹 “ 𝑒) = (◡𝐹 “ ∅)) |
| 22 | 21 | eleq1d 2820 |
. . . 4
⊢ (𝑒 = ∅ → ((◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷) ↔ (◡𝐹 “ ∅) ∈ (𝑆 ↾t 𝐷))) |
| 23 | 22, 1 | elrab2 3679 |
. . 3
⊢ (∅
∈ 𝑇 ↔ (∅
∈ 𝒫 ℝ ∧ (◡𝐹 “ ∅) ∈ (𝑆 ↾t 𝐷))) |
| 24 | 20, 23 | sylibr 234 |
. 2
⊢ (𝜑 → ∅ ∈ 𝑇) |
| 25 | | eqid 2736 |
. 2
⊢ ∪ 𝑇 =
∪ 𝑇 |
| 26 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑦𝜑 |
| 27 | | nfcv 2899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑒𝑦 |
| 28 | | nfrab1 3441 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑒{𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} |
| 29 | 1, 28 | nfcxfr 2897 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑒𝑇 |
| 30 | 27, 29 | eluni2f 45094 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ∪ 𝑇
↔ ∃𝑒 ∈
𝑇 𝑦 ∈ 𝑒) |
| 31 | 30 | biimpi 216 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ∪ 𝑇
→ ∃𝑒 ∈
𝑇 𝑦 ∈ 𝑒) |
| 32 | 31 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ 𝑇) → ∃𝑒 ∈ 𝑇 𝑦 ∈ 𝑒) |
| 33 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑒𝜑 |
| 34 | 29 | nfuni 4895 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑒∪ 𝑇 |
| 35 | 27, 34 | nfel 2914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑒 𝑦 ∈ ∪ 𝑇 |
| 36 | 33, 35 | nfan 1899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑒(𝜑 ∧ 𝑦 ∈ ∪ 𝑇) |
| 37 | 27 | nfel1 2916 |
. . . . . . . . . . 11
⊢
Ⅎ𝑒 𝑦 ∈ ℝ |
| 38 | 1 | eleq2i 2827 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 ∈ 𝑇 ↔ 𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)}) |
| 39 | 38 | biimpi 216 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 ∈ 𝑇 → 𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)}) |
| 40 | | rabidim1 3443 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} → 𝑒 ∈ 𝒫 ℝ) |
| 41 | 39, 40 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 ∈ 𝑇 → 𝑒 ∈ 𝒫 ℝ) |
| 42 | | elpwi 4587 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 ∈ 𝒫 ℝ →
𝑒 ⊆
ℝ) |
| 43 | 41, 42 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 ∈ 𝑇 → 𝑒 ⊆ ℝ) |
| 44 | 43 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑒 ∈ 𝑇 ∧ 𝑦 ∈ 𝑒) → 𝑒 ⊆ ℝ) |
| 45 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑒 ∈ 𝑇 ∧ 𝑦 ∈ 𝑒) → 𝑦 ∈ 𝑒) |
| 46 | 44, 45 | sseldd 3964 |
. . . . . . . . . . . . 13
⊢ ((𝑒 ∈ 𝑇 ∧ 𝑦 ∈ 𝑒) → 𝑦 ∈ ℝ) |
| 47 | 46 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑒 ∈ 𝑇 → (𝑦 ∈ 𝑒 → 𝑦 ∈ ℝ)) |
| 48 | 47 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ 𝑇) → (𝑒 ∈ 𝑇 → (𝑦 ∈ 𝑒 → 𝑦 ∈ ℝ))) |
| 49 | 36, 37, 48 | rexlimd 3253 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ 𝑇) → (∃𝑒 ∈ 𝑇 𝑦 ∈ 𝑒 → 𝑦 ∈ ℝ)) |
| 50 | 32, 49 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ 𝑇) → 𝑦 ∈ ℝ) |
| 51 | 50 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ ∪ 𝑇 → 𝑦 ∈ ℝ)) |
| 52 | | ovexd 7445 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ V) |
| 53 | | ioossre 13429 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 − 1)(,)(𝑦 + 1)) ⊆
ℝ |
| 54 | 53 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ⊆ ℝ) |
| 55 | 52, 54 | elpwd 4586 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫
ℝ) |
| 56 | 55 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫
ℝ) |
| 57 | 10, 12, 13 | smff 46728 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| 58 | 57 | ffnd 6712 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹 Fn 𝐷) |
| 59 | | fncnvima2 7056 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 Fn 𝐷 → (◡𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))}) |
| 60 | 58, 59 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (◡𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))}) |
| 61 | 60 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (◡𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))}) |
| 62 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ ℝ) |
| 63 | 10 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑆 ∈ SAlg) |
| 64 | 15 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐷 ∈ V) |
| 65 | 57 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐹:𝐷⟶ℝ) |
| 66 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝐷) |
| 67 | 65, 66 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ) |
| 68 | 67 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ) |
| 69 | 57 | feqmptd 6952 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥))) |
| 70 | 69 | eqcomd 2742 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) = 𝐹) |
| 71 | 70, 12 | eqeltrd 2835 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) ∈ (SMblFn‘𝑆)) |
| 72 | 71 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) ∈ (SMblFn‘𝑆)) |
| 73 | | peano2rem 11555 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℝ → (𝑦 − 1) ∈
ℝ) |
| 74 | 73 | rexrd 11290 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ → (𝑦 − 1) ∈
ℝ*) |
| 75 | 74 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 − 1) ∈
ℝ*) |
| 76 | | peano2re 11413 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℝ → (𝑦 + 1) ∈
ℝ) |
| 77 | 76 | rexrd 11290 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ → (𝑦 + 1) ∈
ℝ*) |
| 78 | 77 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + 1) ∈
ℝ*) |
| 79 | 62, 63, 64, 68, 72, 75, 78 | smfpimioompt 46782 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))} ∈ (𝑆 ↾t 𝐷)) |
| 80 | 61, 79 | eqeltrd 2835 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (◡𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆 ↾t 𝐷)) |
| 81 | 56, 80 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ ∧ (◡𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆 ↾t 𝐷))) |
| 82 | | imaeq2 6048 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → (◡𝐹 “ 𝑒) = (◡𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1)))) |
| 83 | 82 | eleq1d 2820 |
. . . . . . . . . . . . 13
⊢ (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → ((◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷) ↔ (◡𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆 ↾t 𝐷))) |
| 84 | 83, 1 | elrab2 3679 |
. . . . . . . . . . . 12
⊢ (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇 ↔ (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ ∧ (◡𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆 ↾t 𝐷))) |
| 85 | 81, 84 | sylibr 234 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇) |
| 86 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℝ) |
| 87 | | ltm1 12088 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ → (𝑦 − 1) < 𝑦) |
| 88 | | ltp1 12086 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1)) |
| 89 | 74, 77, 86, 87, 88 | eliood 45494 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))) |
| 90 | 89 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))) |
| 91 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑒 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1)) |
| 92 | | nfcv 2899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑒((𝑦 − 1)(,)(𝑦 + 1)) |
| 93 | | eleq2 2824 |
. . . . . . . . . . . 12
⊢ (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → (𝑦 ∈ 𝑒 ↔ 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1)))) |
| 94 | 91, 92, 29, 93 | rspcef 45063 |
. . . . . . . . . . 11
⊢ ((((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇 ∧ 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))) → ∃𝑒 ∈ 𝑇 𝑦 ∈ 𝑒) |
| 95 | 85, 90, 94 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ∃𝑒 ∈ 𝑇 𝑦 ∈ 𝑒) |
| 96 | 95, 30 | sylibr 234 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ∪ 𝑇) |
| 97 | 96 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ ℝ → 𝑦 ∈ ∪ 𝑇)) |
| 98 | 51, 97 | impbid 212 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ ∪ 𝑇 ↔ 𝑦 ∈ ℝ)) |
| 99 | 26, 98 | alrimi 2214 |
. . . . . 6
⊢ (𝜑 → ∀𝑦(𝑦 ∈ ∪ 𝑇 ↔ 𝑦 ∈ ℝ)) |
| 100 | | dfcleq 2729 |
. . . . . 6
⊢ (∪ 𝑇 =
ℝ ↔ ∀𝑦(𝑦 ∈ ∪ 𝑇 ↔ 𝑦 ∈ ℝ)) |
| 101 | 99, 100 | sylibr 234 |
. . . . 5
⊢ (𝜑 → ∪ 𝑇 =
ℝ) |
| 102 | 101 | difeq1d 4105 |
. . . 4
⊢ (𝜑 → (∪ 𝑇
∖ 𝑥) = (ℝ
∖ 𝑥)) |
| 103 | 102 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (∪ 𝑇 ∖ 𝑥) = (ℝ ∖ 𝑥)) |
| 104 | | difss 4116 |
. . . . . . 7
⊢ (ℝ
∖ 𝑥) ⊆
ℝ |
| 105 | 2, 104 | ssexi 5297 |
. . . . . . . 8
⊢ (ℝ
∖ 𝑥) ∈
V |
| 106 | | elpwg 4583 |
. . . . . . . 8
⊢ ((ℝ
∖ 𝑥) ∈ V →
((ℝ ∖ 𝑥) ∈
𝒫 ℝ ↔ (ℝ ∖ 𝑥) ⊆ ℝ)) |
| 107 | 105, 106 | ax-mp 5 |
. . . . . . 7
⊢ ((ℝ
∖ 𝑥) ∈ 𝒫
ℝ ↔ (ℝ ∖ 𝑥) ⊆ ℝ) |
| 108 | 104, 107 | mpbir 231 |
. . . . . 6
⊢ (ℝ
∖ 𝑥) ∈ 𝒫
ℝ |
| 109 | 108 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (ℝ ∖ 𝑥) ∈ 𝒫 ℝ) |
| 110 | 57 | ffund 6715 |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝐹) |
| 111 | | difpreima 7060 |
. . . . . . . . 9
⊢ (Fun
𝐹 → (◡𝐹 “ (ℝ ∖ 𝑥)) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ 𝑥))) |
| 112 | 110, 111 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (◡𝐹 “ (ℝ ∖ 𝑥)) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ 𝑥))) |
| 113 | | fimacnv 6733 |
. . . . . . . . . . 11
⊢ (𝐹:𝐷⟶ℝ → (◡𝐹 “ ℝ) = 𝐷) |
| 114 | 57, 113 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹 “ ℝ) = 𝐷) |
| 115 | 10, 14 | restuni4 45112 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ (𝑆
↾t 𝐷) =
𝐷) |
| 116 | 114, 115 | eqtr4d 2774 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝐹 “ ℝ) = ∪ (𝑆
↾t 𝐷)) |
| 117 | 116 | difeq1d 4105 |
. . . . . . . 8
⊢ (𝜑 → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ 𝑥)) = (∪ (𝑆 ↾t 𝐷) ∖ (◡𝐹 “ 𝑥))) |
| 118 | 112, 117 | eqtrd 2771 |
. . . . . . 7
⊢ (𝜑 → (◡𝐹 “ (ℝ ∖ 𝑥)) = (∪ (𝑆 ↾t 𝐷) ∖ (◡𝐹 “ 𝑥))) |
| 119 | 118 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (◡𝐹 “ (ℝ ∖ 𝑥)) = (∪ (𝑆 ↾t 𝐷) ∖ (◡𝐹 “ 𝑥))) |
| 120 | 17 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑆 ↾t 𝐷) ∈ SAlg) |
| 121 | | imaeq2 6048 |
. . . . . . . . . . . 12
⊢ (𝑒 = 𝑥 → (◡𝐹 “ 𝑒) = (◡𝐹 “ 𝑥)) |
| 122 | 121 | eleq1d 2820 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝑥 → ((◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷) ↔ (◡𝐹 “ 𝑥) ∈ (𝑆 ↾t 𝐷))) |
| 123 | 122, 1 | elrab2 3679 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑇 ↔ (𝑥 ∈ 𝒫 ℝ ∧ (◡𝐹 “ 𝑥) ∈ (𝑆 ↾t 𝐷))) |
| 124 | 123 | biimpi 216 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑇 → (𝑥 ∈ 𝒫 ℝ ∧ (◡𝐹 “ 𝑥) ∈ (𝑆 ↾t 𝐷))) |
| 125 | 124 | simprd 495 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑇 → (◡𝐹 “ 𝑥) ∈ (𝑆 ↾t 𝐷)) |
| 126 | 125 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (◡𝐹 “ 𝑥) ∈ (𝑆 ↾t 𝐷)) |
| 127 | 120, 126 | saldifcld 46343 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (∪
(𝑆 ↾t
𝐷) ∖ (◡𝐹 “ 𝑥)) ∈ (𝑆 ↾t 𝐷)) |
| 128 | 119, 127 | eqeltrd 2835 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (◡𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆 ↾t 𝐷)) |
| 129 | 109, 128 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ∧
(◡𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆 ↾t 𝐷))) |
| 130 | | imaeq2 6048 |
. . . . . 6
⊢ (𝑒 = (ℝ ∖ 𝑥) → (◡𝐹 “ 𝑒) = (◡𝐹 “ (ℝ ∖ 𝑥))) |
| 131 | 130 | eleq1d 2820 |
. . . . 5
⊢ (𝑒 = (ℝ ∖ 𝑥) → ((◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷) ↔ (◡𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆 ↾t 𝐷))) |
| 132 | 131, 1 | elrab2 3679 |
. . . 4
⊢ ((ℝ
∖ 𝑥) ∈ 𝑇 ↔ ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ∧
(◡𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆 ↾t 𝐷))) |
| 133 | 129, 132 | sylibr 234 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (ℝ ∖ 𝑥) ∈ 𝑇) |
| 134 | 103, 133 | eqeltrd 2835 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (∪ 𝑇 ∖ 𝑥) ∈ 𝑇) |
| 135 | | nnex 12251 |
. . . . . . . 8
⊢ ℕ
∈ V |
| 136 | | fvex 6894 |
. . . . . . . 8
⊢ (𝑔‘𝑛) ∈ V |
| 137 | 135, 136 | iunex 7972 |
. . . . . . 7
⊢ ∪ 𝑛 ∈ ℕ (𝑔‘𝑛) ∈ V |
| 138 | 137 | a1i 11 |
. . . . . 6
⊢ (𝑔:ℕ⟶𝑇 → ∪ 𝑛 ∈ ℕ (𝑔‘𝑛) ∈ V) |
| 139 | | ffvelcdm 7076 |
. . . . . . . 8
⊢ ((𝑔:ℕ⟶𝑇 ∧ 𝑛 ∈ ℕ) → (𝑔‘𝑛) ∈ 𝑇) |
| 140 | 1 | eleq2i 2827 |
. . . . . . . . 9
⊢ ((𝑔‘𝑛) ∈ 𝑇 ↔ (𝑔‘𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)}) |
| 141 | 140 | biimpi 216 |
. . . . . . . 8
⊢ ((𝑔‘𝑛) ∈ 𝑇 → (𝑔‘𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)}) |
| 142 | | elrabi 3671 |
. . . . . . . 8
⊢ ((𝑔‘𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} → (𝑔‘𝑛) ∈ 𝒫 ℝ) |
| 143 | | elpwi 4587 |
. . . . . . . 8
⊢ ((𝑔‘𝑛) ∈ 𝒫 ℝ → (𝑔‘𝑛) ⊆ ℝ) |
| 144 | 139, 141,
142, 143 | 4syl 19 |
. . . . . . 7
⊢ ((𝑔:ℕ⟶𝑇 ∧ 𝑛 ∈ ℕ) → (𝑔‘𝑛) ⊆ ℝ) |
| 145 | 144 | iunssd 5031 |
. . . . . 6
⊢ (𝑔:ℕ⟶𝑇 → ∪ 𝑛 ∈ ℕ (𝑔‘𝑛) ⊆ ℝ) |
| 146 | 138, 145 | elpwd 4586 |
. . . . 5
⊢ (𝑔:ℕ⟶𝑇 → ∪ 𝑛 ∈ ℕ (𝑔‘𝑛) ∈ 𝒫 ℝ) |
| 147 | 146 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑔:ℕ⟶𝑇) → ∪
𝑛 ∈ ℕ (𝑔‘𝑛) ∈ 𝒫 ℝ) |
| 148 | | imaiun 7242 |
. . . . . 6
⊢ (◡𝐹 “ ∪
𝑛 ∈ ℕ (𝑔‘𝑛)) = ∪
𝑛 ∈ ℕ (◡𝐹 “ (𝑔‘𝑛)) |
| 149 | 148 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔:ℕ⟶𝑇) → (◡𝐹 “ ∪
𝑛 ∈ ℕ (𝑔‘𝑛)) = ∪
𝑛 ∈ ℕ (◡𝐹 “ (𝑔‘𝑛))) |
| 150 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔:ℕ⟶𝑇) → (𝑆 ↾t 𝐷) ∈ SAlg) |
| 151 | | nnct 14004 |
. . . . . . 7
⊢ ℕ
≼ ω |
| 152 | 151 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔:ℕ⟶𝑇) → ℕ ≼
ω) |
| 153 | | imaeq2 6048 |
. . . . . . . . . . . 12
⊢ (𝑒 = (𝑔‘𝑛) → (◡𝐹 “ 𝑒) = (◡𝐹 “ (𝑔‘𝑛))) |
| 154 | 153 | eleq1d 2820 |
. . . . . . . . . . 11
⊢ (𝑒 = (𝑔‘𝑛) → ((◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷) ↔ (◡𝐹 “ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷))) |
| 155 | 154, 1 | elrab2 3679 |
. . . . . . . . . 10
⊢ ((𝑔‘𝑛) ∈ 𝑇 ↔ ((𝑔‘𝑛) ∈ 𝒫 ℝ ∧ (◡𝐹 “ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷))) |
| 156 | 155 | biimpi 216 |
. . . . . . . . 9
⊢ ((𝑔‘𝑛) ∈ 𝑇 → ((𝑔‘𝑛) ∈ 𝒫 ℝ ∧ (◡𝐹 “ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷))) |
| 157 | 156 | simprd 495 |
. . . . . . . 8
⊢ ((𝑔‘𝑛) ∈ 𝑇 → (◡𝐹 “ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷)) |
| 158 | 139, 157 | syl 17 |
. . . . . . 7
⊢ ((𝑔:ℕ⟶𝑇 ∧ 𝑛 ∈ ℕ) → (◡𝐹 “ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷)) |
| 159 | 158 | adantll 714 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔:ℕ⟶𝑇) ∧ 𝑛 ∈ ℕ) → (◡𝐹 “ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷)) |
| 160 | 150, 152,
159 | saliuncl 46319 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔:ℕ⟶𝑇) → ∪
𝑛 ∈ ℕ (◡𝐹 “ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷)) |
| 161 | 149, 160 | eqeltrd 2835 |
. . . 4
⊢ ((𝜑 ∧ 𝑔:ℕ⟶𝑇) → (◡𝐹 “ ∪
𝑛 ∈ ℕ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷)) |
| 162 | 147, 161 | jca 511 |
. . 3
⊢ ((𝜑 ∧ 𝑔:ℕ⟶𝑇) → (∪ 𝑛 ∈ ℕ (𝑔‘𝑛) ∈ 𝒫 ℝ ∧ (◡𝐹 “ ∪
𝑛 ∈ ℕ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷))) |
| 163 | | imaeq2 6048 |
. . . . 5
⊢ (𝑒 = ∪ 𝑛 ∈ ℕ (𝑔‘𝑛) → (◡𝐹 “ 𝑒) = (◡𝐹 “ ∪
𝑛 ∈ ℕ (𝑔‘𝑛))) |
| 164 | 163 | eleq1d 2820 |
. . . 4
⊢ (𝑒 = ∪ 𝑛 ∈ ℕ (𝑔‘𝑛) → ((◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷) ↔ (◡𝐹 “ ∪
𝑛 ∈ ℕ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷))) |
| 165 | 164, 1 | elrab2 3679 |
. . 3
⊢ (∪ 𝑛 ∈ ℕ (𝑔‘𝑛) ∈ 𝑇 ↔ (∪
𝑛 ∈ ℕ (𝑔‘𝑛) ∈ 𝒫 ℝ ∧ (◡𝐹 “ ∪
𝑛 ∈ ℕ (𝑔‘𝑛)) ∈ (𝑆 ↾t 𝐷))) |
| 166 | 162, 165 | sylibr 234 |
. 2
⊢ ((𝜑 ∧ 𝑔:ℕ⟶𝑇) → ∪
𝑛 ∈ ℕ (𝑔‘𝑛) ∈ 𝑇) |
| 167 | 5, 24, 25, 134, 166 | issalnnd 46341 |
1
⊢ (𝜑 → 𝑇 ∈ SAlg) |