Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfresal Structured version   Visualization version   GIF version

Theorem smfresal 46900
Description: Given a sigma-measurable function, the subsets of whose preimage is in the sigma-algebra induced by the function's domain, form a sigma-algebra. First part of the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfresal.s (𝜑𝑆 ∈ SAlg)
smfresal.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfresal.d 𝐷 = dom 𝐹
smfresal.t 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
Assertion
Ref Expression
smfresal (𝜑𝑇 ∈ SAlg)
Distinct variable groups:   𝐷,𝑒   𝑒,𝐹   𝑆,𝑒   𝜑,𝑒
Allowed substitution hint:   𝑇(𝑒)

Proof of Theorem smfresal
Dummy variables 𝑛 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfresal.t . . . 4 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
2 reex 11107 . . . . 5 ℝ ∈ V
32pwex 5322 . . . 4 𝒫 ℝ ∈ V
41, 3rabex2 5283 . . 3 𝑇 ∈ V
54a1i 11 . 2 (𝜑𝑇 ∈ V)
6 0elpw 5298 . . . . 5 ∅ ∈ 𝒫 ℝ
76a1i 11 . . . 4 (𝜑 → ∅ ∈ 𝒫 ℝ)
8 ima0 6033 . . . . . 6 (𝐹 “ ∅) = ∅
98a1i 11 . . . . 5 (𝜑 → (𝐹 “ ∅) = ∅)
10 smfresal.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
1110uniexd 7684 . . . . . . . 8 (𝜑 𝑆 ∈ V)
12 smfresal.f . . . . . . . . 9 (𝜑𝐹 ∈ (SMblFn‘𝑆))
13 smfresal.d . . . . . . . . 9 𝐷 = dom 𝐹
1410, 12, 13smfdmss 46845 . . . . . . . 8 (𝜑𝐷 𝑆)
1511, 14ssexd 5266 . . . . . . 7 (𝜑𝐷 ∈ V)
16 eqid 2733 . . . . . . 7 (𝑆t 𝐷) = (𝑆t 𝐷)
1710, 15, 16subsalsal 46471 . . . . . 6 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
18170sald 46462 . . . . 5 (𝜑 → ∅ ∈ (𝑆t 𝐷))
199, 18eqeltrd 2833 . . . 4 (𝜑 → (𝐹 “ ∅) ∈ (𝑆t 𝐷))
207, 19jca 511 . . 3 (𝜑 → (∅ ∈ 𝒫 ℝ ∧ (𝐹 “ ∅) ∈ (𝑆t 𝐷)))
21 imaeq2 6012 . . . . 5 (𝑒 = ∅ → (𝐹𝑒) = (𝐹 “ ∅))
2221eleq1d 2818 . . . 4 (𝑒 = ∅ → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ ∅) ∈ (𝑆t 𝐷)))
2322, 1elrab2 3647 . . 3 (∅ ∈ 𝑇 ↔ (∅ ∈ 𝒫 ℝ ∧ (𝐹 “ ∅) ∈ (𝑆t 𝐷)))
2420, 23sylibr 234 . 2 (𝜑 → ∅ ∈ 𝑇)
25 eqid 2733 . 2 𝑇 = 𝑇
26 nfv 1915 . . . . . . 7 𝑦𝜑
27 nfcv 2896 . . . . . . . . . . . . 13 𝑒𝑦
28 nfrab1 3417 . . . . . . . . . . . . . 14 𝑒{𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
291, 28nfcxfr 2894 . . . . . . . . . . . . 13 𝑒𝑇
3027, 29eluni2f 45214 . . . . . . . . . . . 12 (𝑦 𝑇 ↔ ∃𝑒𝑇 𝑦𝑒)
3130biimpi 216 . . . . . . . . . . 11 (𝑦 𝑇 → ∃𝑒𝑇 𝑦𝑒)
3231adantl 481 . . . . . . . . . 10 ((𝜑𝑦 𝑇) → ∃𝑒𝑇 𝑦𝑒)
33 nfv 1915 . . . . . . . . . . . 12 𝑒𝜑
3429nfuni 4867 . . . . . . . . . . . . 13 𝑒 𝑇
3527, 34nfel 2911 . . . . . . . . . . . 12 𝑒 𝑦 𝑇
3633, 35nfan 1900 . . . . . . . . . . 11 𝑒(𝜑𝑦 𝑇)
3727nfel1 2913 . . . . . . . . . . 11 𝑒 𝑦 ∈ ℝ
381eleq2i 2825 . . . . . . . . . . . . . . . . . 18 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
3938biimpi 216 . . . . . . . . . . . . . . . . 17 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
40 rabidim1 3419 . . . . . . . . . . . . . . . . 17 (𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} → 𝑒 ∈ 𝒫 ℝ)
4139, 40syl 17 . . . . . . . . . . . . . . . 16 (𝑒𝑇𝑒 ∈ 𝒫 ℝ)
42 elpwi 4558 . . . . . . . . . . . . . . . 16 (𝑒 ∈ 𝒫 ℝ → 𝑒 ⊆ ℝ)
4341, 42syl 17 . . . . . . . . . . . . . . 15 (𝑒𝑇𝑒 ⊆ ℝ)
4443adantr 480 . . . . . . . . . . . . . 14 ((𝑒𝑇𝑦𝑒) → 𝑒 ⊆ ℝ)
45 simpr 484 . . . . . . . . . . . . . 14 ((𝑒𝑇𝑦𝑒) → 𝑦𝑒)
4644, 45sseldd 3932 . . . . . . . . . . . . 13 ((𝑒𝑇𝑦𝑒) → 𝑦 ∈ ℝ)
4746ex 412 . . . . . . . . . . . 12 (𝑒𝑇 → (𝑦𝑒𝑦 ∈ ℝ))
4847a1i 11 . . . . . . . . . . 11 ((𝜑𝑦 𝑇) → (𝑒𝑇 → (𝑦𝑒𝑦 ∈ ℝ)))
4936, 37, 48rexlimd 3241 . . . . . . . . . 10 ((𝜑𝑦 𝑇) → (∃𝑒𝑇 𝑦𝑒𝑦 ∈ ℝ))
5032, 49mpd 15 . . . . . . . . 9 ((𝜑𝑦 𝑇) → 𝑦 ∈ ℝ)
5150ex 412 . . . . . . . 8 (𝜑 → (𝑦 𝑇𝑦 ∈ ℝ))
52 ovexd 7390 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ V)
53 ioossre 13317 . . . . . . . . . . . . . . . 16 ((𝑦 − 1)(,)(𝑦 + 1)) ⊆ ℝ
5453a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ⊆ ℝ)
5552, 54elpwd 4557 . . . . . . . . . . . . . 14 (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ)
5655adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ)
5710, 12, 13smff 46844 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐷⟶ℝ)
5857ffnd 6660 . . . . . . . . . . . . . . . 16 (𝜑𝐹 Fn 𝐷)
59 fncnvima2 7003 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝐷 → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))})
6058, 59syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))})
6160adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))})
62 nfv 1915 . . . . . . . . . . . . . . 15 𝑥(𝜑𝑦 ∈ ℝ)
6310adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 𝑆 ∈ SAlg)
6415adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 𝐷 ∈ V)
6557adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → 𝐹:𝐷⟶ℝ)
66 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → 𝑥𝐷)
6765, 66ffvelcdmd 7027 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
6867adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
6957feqmptd 6899 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥𝐷 ↦ (𝐹𝑥)))
7069eqcomd 2739 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥𝐷 ↦ (𝐹𝑥)) = 𝐹)
7170, 12eqeltrd 2833 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐷 ↦ (𝐹𝑥)) ∈ (SMblFn‘𝑆))
7271adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → (𝑥𝐷 ↦ (𝐹𝑥)) ∈ (SMblFn‘𝑆))
73 peano2rem 11438 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ)
7473rexrd 11172 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ*)
7574adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → (𝑦 − 1) ∈ ℝ*)
76 peano2re 11296 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
7776rexrd 11172 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ*)
7877adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 1) ∈ ℝ*)
7962, 63, 64, 68, 72, 75, 78smfpimioompt 46898 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))} ∈ (𝑆t 𝐷))
8061, 79eqeltrd 2833 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷))
8156, 80jca 511 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷)))
82 imaeq2 6012 . . . . . . . . . . . . . 14 (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → (𝐹𝑒) = (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))))
8382eleq1d 2818 . . . . . . . . . . . . 13 (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷)))
8483, 1elrab2 3647 . . . . . . . . . . . 12 (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇 ↔ (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷)))
8581, 84sylibr 234 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇)
86 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ)
87 ltm1 11973 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 − 1) < 𝑦)
88 ltp1 11971 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
8974, 77, 86, 87, 88eliood 45612 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1)))
9089adantl 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1)))
91 nfv 1915 . . . . . . . . . . . 12 𝑒 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))
92 nfcv 2896 . . . . . . . . . . . 12 𝑒((𝑦 − 1)(,)(𝑦 + 1))
93 eleq2 2822 . . . . . . . . . . . 12 (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → (𝑦𝑒𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))))
9491, 92, 29, 93rspcef 45183 . . . . . . . . . . 11 ((((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))) → ∃𝑒𝑇 𝑦𝑒)
9585, 90, 94syl2anc 584 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → ∃𝑒𝑇 𝑦𝑒)
9695, 30sylibr 234 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 𝑇)
9796ex 412 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ → 𝑦 𝑇))
9851, 97impbid 212 . . . . . . 7 (𝜑 → (𝑦 𝑇𝑦 ∈ ℝ))
9926, 98alrimi 2218 . . . . . 6 (𝜑 → ∀𝑦(𝑦 𝑇𝑦 ∈ ℝ))
100 dfcleq 2726 . . . . . 6 ( 𝑇 = ℝ ↔ ∀𝑦(𝑦 𝑇𝑦 ∈ ℝ))
10199, 100sylibr 234 . . . . 5 (𝜑 𝑇 = ℝ)
102101difeq1d 4076 . . . 4 (𝜑 → ( 𝑇𝑥) = (ℝ ∖ 𝑥))
103102adantr 480 . . 3 ((𝜑𝑥𝑇) → ( 𝑇𝑥) = (ℝ ∖ 𝑥))
104 difss 4087 . . . . . . 7 (ℝ ∖ 𝑥) ⊆ ℝ
1052, 104ssexi 5264 . . . . . . . 8 (ℝ ∖ 𝑥) ∈ V
106 elpwg 4554 . . . . . . . 8 ((ℝ ∖ 𝑥) ∈ V → ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ↔ (ℝ ∖ 𝑥) ⊆ ℝ))
107105, 106ax-mp 5 . . . . . . 7 ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ↔ (ℝ ∖ 𝑥) ⊆ ℝ)
108104, 107mpbir 231 . . . . . 6 (ℝ ∖ 𝑥) ∈ 𝒫 ℝ
109108a1i 11 . . . . 5 ((𝜑𝑥𝑇) → (ℝ ∖ 𝑥) ∈ 𝒫 ℝ)
11057ffund 6663 . . . . . . . . 9 (𝜑 → Fun 𝐹)
111 difpreima 7007 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ (ℝ ∖ 𝑥)) = ((𝐹 “ ℝ) ∖ (𝐹𝑥)))
112110, 111syl 17 . . . . . . . 8 (𝜑 → (𝐹 “ (ℝ ∖ 𝑥)) = ((𝐹 “ ℝ) ∖ (𝐹𝑥)))
113 fimacnv 6681 . . . . . . . . . . 11 (𝐹:𝐷⟶ℝ → (𝐹 “ ℝ) = 𝐷)
11457, 113syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ ℝ) = 𝐷)
11510, 14restuni4 45232 . . . . . . . . . 10 (𝜑 (𝑆t 𝐷) = 𝐷)
116114, 115eqtr4d 2771 . . . . . . . . 9 (𝜑 → (𝐹 “ ℝ) = (𝑆t 𝐷))
117116difeq1d 4076 . . . . . . . 8 (𝜑 → ((𝐹 “ ℝ) ∖ (𝐹𝑥)) = ( (𝑆t 𝐷) ∖ (𝐹𝑥)))
118112, 117eqtrd 2768 . . . . . . 7 (𝜑 → (𝐹 “ (ℝ ∖ 𝑥)) = ( (𝑆t 𝐷) ∖ (𝐹𝑥)))
119118adantr 480 . . . . . 6 ((𝜑𝑥𝑇) → (𝐹 “ (ℝ ∖ 𝑥)) = ( (𝑆t 𝐷) ∖ (𝐹𝑥)))
12017adantr 480 . . . . . . 7 ((𝜑𝑥𝑇) → (𝑆t 𝐷) ∈ SAlg)
121 imaeq2 6012 . . . . . . . . . . . 12 (𝑒 = 𝑥 → (𝐹𝑒) = (𝐹𝑥))
122121eleq1d 2818 . . . . . . . . . . 11 (𝑒 = 𝑥 → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹𝑥) ∈ (𝑆t 𝐷)))
123122, 1elrab2 3647 . . . . . . . . . 10 (𝑥𝑇 ↔ (𝑥 ∈ 𝒫 ℝ ∧ (𝐹𝑥) ∈ (𝑆t 𝐷)))
124123biimpi 216 . . . . . . . . 9 (𝑥𝑇 → (𝑥 ∈ 𝒫 ℝ ∧ (𝐹𝑥) ∈ (𝑆t 𝐷)))
125124simprd 495 . . . . . . . 8 (𝑥𝑇 → (𝐹𝑥) ∈ (𝑆t 𝐷))
126125adantl 481 . . . . . . 7 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ (𝑆t 𝐷))
127120, 126saldifcld 46459 . . . . . 6 ((𝜑𝑥𝑇) → ( (𝑆t 𝐷) ∖ (𝐹𝑥)) ∈ (𝑆t 𝐷))
128119, 127eqeltrd 2833 . . . . 5 ((𝜑𝑥𝑇) → (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷))
129109, 128jca 511 . . . 4 ((𝜑𝑥𝑇) → ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ∧ (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷)))
130 imaeq2 6012 . . . . . 6 (𝑒 = (ℝ ∖ 𝑥) → (𝐹𝑒) = (𝐹 “ (ℝ ∖ 𝑥)))
131130eleq1d 2818 . . . . 5 (𝑒 = (ℝ ∖ 𝑥) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷)))
132131, 1elrab2 3647 . . . 4 ((ℝ ∖ 𝑥) ∈ 𝑇 ↔ ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ∧ (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷)))
133129, 132sylibr 234 . . 3 ((𝜑𝑥𝑇) → (ℝ ∖ 𝑥) ∈ 𝑇)
134103, 133eqeltrd 2833 . 2 ((𝜑𝑥𝑇) → ( 𝑇𝑥) ∈ 𝑇)
135 nnex 12141 . . . . . . . 8 ℕ ∈ V
136 fvex 6844 . . . . . . . 8 (𝑔𝑛) ∈ V
137135, 136iunex 7909 . . . . . . 7 𝑛 ∈ ℕ (𝑔𝑛) ∈ V
138137a1i 11 . . . . . 6 (𝑔:ℕ⟶𝑇 𝑛 ∈ ℕ (𝑔𝑛) ∈ V)
139 ffvelcdm 7023 . . . . . . . 8 ((𝑔:ℕ⟶𝑇𝑛 ∈ ℕ) → (𝑔𝑛) ∈ 𝑇)
1401eleq2i 2825 . . . . . . . . 9 ((𝑔𝑛) ∈ 𝑇 ↔ (𝑔𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
141140biimpi 216 . . . . . . . 8 ((𝑔𝑛) ∈ 𝑇 → (𝑔𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
142 elrabi 3640 . . . . . . . 8 ((𝑔𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} → (𝑔𝑛) ∈ 𝒫 ℝ)
143 elpwi 4558 . . . . . . . 8 ((𝑔𝑛) ∈ 𝒫 ℝ → (𝑔𝑛) ⊆ ℝ)
144139, 141, 142, 1434syl 19 . . . . . . 7 ((𝑔:ℕ⟶𝑇𝑛 ∈ ℕ) → (𝑔𝑛) ⊆ ℝ)
145144iunssd 5003 . . . . . 6 (𝑔:ℕ⟶𝑇 𝑛 ∈ ℕ (𝑔𝑛) ⊆ ℝ)
146138, 145elpwd 4557 . . . . 5 (𝑔:ℕ⟶𝑇 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ)
147146adantl 481 . . . 4 ((𝜑𝑔:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ)
148 imaiun 7188 . . . . . 6 (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) = 𝑛 ∈ ℕ (𝐹 “ (𝑔𝑛))
149148a1i 11 . . . . 5 ((𝜑𝑔:ℕ⟶𝑇) → (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) = 𝑛 ∈ ℕ (𝐹 “ (𝑔𝑛)))
15017adantr 480 . . . . . 6 ((𝜑𝑔:ℕ⟶𝑇) → (𝑆t 𝐷) ∈ SAlg)
151 nnct 13898 . . . . . . 7 ℕ ≼ ω
152151a1i 11 . . . . . 6 ((𝜑𝑔:ℕ⟶𝑇) → ℕ ≼ ω)
153 imaeq2 6012 . . . . . . . . . . . 12 (𝑒 = (𝑔𝑛) → (𝐹𝑒) = (𝐹 “ (𝑔𝑛)))
154153eleq1d 2818 . . . . . . . . . . 11 (𝑒 = (𝑔𝑛) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
155154, 1elrab2 3647 . . . . . . . . . 10 ((𝑔𝑛) ∈ 𝑇 ↔ ((𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
156155biimpi 216 . . . . . . . . 9 ((𝑔𝑛) ∈ 𝑇 → ((𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
157156simprd 495 . . . . . . . 8 ((𝑔𝑛) ∈ 𝑇 → (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
158139, 157syl 17 . . . . . . 7 ((𝑔:ℕ⟶𝑇𝑛 ∈ ℕ) → (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
159158adantll 714 . . . . . 6 (((𝜑𝑔:ℕ⟶𝑇) ∧ 𝑛 ∈ ℕ) → (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
160150, 152, 159saliuncl 46435 . . . . 5 ((𝜑𝑔:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
161149, 160eqeltrd 2833 . . . 4 ((𝜑𝑔:ℕ⟶𝑇) → (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷))
162147, 161jca 511 . . 3 ((𝜑𝑔:ℕ⟶𝑇) → ( 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
163 imaeq2 6012 . . . . 5 (𝑒 = 𝑛 ∈ ℕ (𝑔𝑛) → (𝐹𝑒) = (𝐹 𝑛 ∈ ℕ (𝑔𝑛)))
164163eleq1d 2818 . . . 4 (𝑒 = 𝑛 ∈ ℕ (𝑔𝑛) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
165164, 1elrab2 3647 . . 3 ( 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝑇 ↔ ( 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
166162, 165sylibr 234 . 2 ((𝜑𝑔:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝑇)
1675, 24, 25, 134, 166issalnnd 46457 1 (𝜑𝑇 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2113  wrex 3058  {crab 3397  Vcvv 3438  cdif 3896  wss 3899  c0 4284  𝒫 cpw 4551   cuni 4860   ciun 4943   class class class wbr 5095  cmpt 5176  ccnv 5620  dom cdm 5621  cima 5624  Fun wfun 6483   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  ωcom 7805  cdom 8876  cr 11015  1c1 11017   + caddc 11019  *cxr 11155  cmin 11354  cn 12135  (,)cioo 13255  t crest 17334  SAlgcsalg 46420  SMblFncsmblfn 46807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cc 10336  ax-ac2 10364  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-sup 9336  df-inf 9337  df-card 9842  df-acn 9845  df-ac 10017  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-n0 12392  df-z 12479  df-uz 12743  df-q 12857  df-rp 12901  df-ioo 13259  df-ico 13261  df-fl 13706  df-rest 17336  df-salg 46421  df-smblfn 46808
This theorem is referenced by:  smfpimbor1lem1  46910  smfpimbor1lem2  46911
  Copyright terms: Public domain W3C validator