Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfresal Structured version   Visualization version   GIF version

Theorem smfresal 44209
Description: Given a sigma-measurable function, the subsets of whose preimage is in the sigma-algebra induced by the function's domain, form a sigma-algebra. First part of the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfresal.s (𝜑𝑆 ∈ SAlg)
smfresal.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfresal.d 𝐷 = dom 𝐹
smfresal.t 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
Assertion
Ref Expression
smfresal (𝜑𝑇 ∈ SAlg)
Distinct variable groups:   𝐷,𝑒   𝑒,𝐹   𝑆,𝑒   𝜑,𝑒
Allowed substitution hint:   𝑇(𝑒)

Proof of Theorem smfresal
Dummy variables 𝑛 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfresal.t . . . 4 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
2 reex 10893 . . . . 5 ℝ ∈ V
32pwex 5298 . . . 4 𝒫 ℝ ∈ V
41, 3rabex2 5253 . . 3 𝑇 ∈ V
54a1i 11 . 2 (𝜑𝑇 ∈ V)
6 0elpw 5273 . . . . 5 ∅ ∈ 𝒫 ℝ
76a1i 11 . . . 4 (𝜑 → ∅ ∈ 𝒫 ℝ)
8 ima0 5974 . . . . . 6 (𝐹 “ ∅) = ∅
98a1i 11 . . . . 5 (𝜑 → (𝐹 “ ∅) = ∅)
10 smfresal.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
1110uniexd 7573 . . . . . . . 8 (𝜑 𝑆 ∈ V)
12 smfresal.f . . . . . . . . 9 (𝜑𝐹 ∈ (SMblFn‘𝑆))
13 smfresal.d . . . . . . . . 9 𝐷 = dom 𝐹
1410, 12, 13smfdmss 44156 . . . . . . . 8 (𝜑𝐷 𝑆)
1511, 14ssexd 5243 . . . . . . 7 (𝜑𝐷 ∈ V)
16 eqid 2738 . . . . . . 7 (𝑆t 𝐷) = (𝑆t 𝐷)
1710, 15, 16subsalsal 43788 . . . . . 6 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
18170sald 43779 . . . . 5 (𝜑 → ∅ ∈ (𝑆t 𝐷))
199, 18eqeltrd 2839 . . . 4 (𝜑 → (𝐹 “ ∅) ∈ (𝑆t 𝐷))
207, 19jca 511 . . 3 (𝜑 → (∅ ∈ 𝒫 ℝ ∧ (𝐹 “ ∅) ∈ (𝑆t 𝐷)))
21 imaeq2 5954 . . . . 5 (𝑒 = ∅ → (𝐹𝑒) = (𝐹 “ ∅))
2221eleq1d 2823 . . . 4 (𝑒 = ∅ → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ ∅) ∈ (𝑆t 𝐷)))
2322, 1elrab2 3620 . . 3 (∅ ∈ 𝑇 ↔ (∅ ∈ 𝒫 ℝ ∧ (𝐹 “ ∅) ∈ (𝑆t 𝐷)))
2420, 23sylibr 233 . 2 (𝜑 → ∅ ∈ 𝑇)
25 eqid 2738 . 2 𝑇 = 𝑇
26 nfv 1918 . . . . . . 7 𝑦𝜑
27 nfcv 2906 . . . . . . . . . . . . 13 𝑒𝑦
28 nfrab1 3310 . . . . . . . . . . . . . 14 𝑒{𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
291, 28nfcxfr 2904 . . . . . . . . . . . . 13 𝑒𝑇
3027, 29eluni2f 42542 . . . . . . . . . . . 12 (𝑦 𝑇 ↔ ∃𝑒𝑇 𝑦𝑒)
3130biimpi 215 . . . . . . . . . . 11 (𝑦 𝑇 → ∃𝑒𝑇 𝑦𝑒)
3231adantl 481 . . . . . . . . . 10 ((𝜑𝑦 𝑇) → ∃𝑒𝑇 𝑦𝑒)
33 nfv 1918 . . . . . . . . . . . 12 𝑒𝜑
3429nfuni 4843 . . . . . . . . . . . . 13 𝑒 𝑇
3527, 34nfel 2920 . . . . . . . . . . . 12 𝑒 𝑦 𝑇
3633, 35nfan 1903 . . . . . . . . . . 11 𝑒(𝜑𝑦 𝑇)
3727nfel1 2922 . . . . . . . . . . 11 𝑒 𝑦 ∈ ℝ
381eleq2i 2830 . . . . . . . . . . . . . . . . . 18 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
3938biimpi 215 . . . . . . . . . . . . . . . . 17 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
40 rabidim1 3306 . . . . . . . . . . . . . . . . 17 (𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} → 𝑒 ∈ 𝒫 ℝ)
4139, 40syl 17 . . . . . . . . . . . . . . . 16 (𝑒𝑇𝑒 ∈ 𝒫 ℝ)
42 elpwi 4539 . . . . . . . . . . . . . . . 16 (𝑒 ∈ 𝒫 ℝ → 𝑒 ⊆ ℝ)
4341, 42syl 17 . . . . . . . . . . . . . . 15 (𝑒𝑇𝑒 ⊆ ℝ)
4443adantr 480 . . . . . . . . . . . . . 14 ((𝑒𝑇𝑦𝑒) → 𝑒 ⊆ ℝ)
45 simpr 484 . . . . . . . . . . . . . 14 ((𝑒𝑇𝑦𝑒) → 𝑦𝑒)
4644, 45sseldd 3918 . . . . . . . . . . . . 13 ((𝑒𝑇𝑦𝑒) → 𝑦 ∈ ℝ)
4746ex 412 . . . . . . . . . . . 12 (𝑒𝑇 → (𝑦𝑒𝑦 ∈ ℝ))
4847a1i 11 . . . . . . . . . . 11 ((𝜑𝑦 𝑇) → (𝑒𝑇 → (𝑦𝑒𝑦 ∈ ℝ)))
4936, 37, 48rexlimd 3245 . . . . . . . . . 10 ((𝜑𝑦 𝑇) → (∃𝑒𝑇 𝑦𝑒𝑦 ∈ ℝ))
5032, 49mpd 15 . . . . . . . . 9 ((𝜑𝑦 𝑇) → 𝑦 ∈ ℝ)
5150ex 412 . . . . . . . 8 (𝜑 → (𝑦 𝑇𝑦 ∈ ℝ))
52 ovexd 7290 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ V)
53 ioossre 13069 . . . . . . . . . . . . . . . 16 ((𝑦 − 1)(,)(𝑦 + 1)) ⊆ ℝ
5453a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ⊆ ℝ)
5552, 54elpwd 4538 . . . . . . . . . . . . . 14 (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ)
5655adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ)
5710, 12, 13smff 44155 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐷⟶ℝ)
5857ffnd 6585 . . . . . . . . . . . . . . . 16 (𝜑𝐹 Fn 𝐷)
59 fncnvima2 6920 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝐷 → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))})
6058, 59syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))})
6160adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))})
62 nfv 1918 . . . . . . . . . . . . . . 15 𝑥(𝜑𝑦 ∈ ℝ)
6310adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 𝑆 ∈ SAlg)
6415adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 𝐷 ∈ V)
6557adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → 𝐹:𝐷⟶ℝ)
66 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → 𝑥𝐷)
6765, 66ffvelrnd 6944 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
6867adantlr 711 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
6957feqmptd 6819 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥𝐷 ↦ (𝐹𝑥)))
7069eqcomd 2744 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥𝐷 ↦ (𝐹𝑥)) = 𝐹)
7170, 12eqeltrd 2839 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐷 ↦ (𝐹𝑥)) ∈ (SMblFn‘𝑆))
7271adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → (𝑥𝐷 ↦ (𝐹𝑥)) ∈ (SMblFn‘𝑆))
73 peano2rem 11218 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ)
7473rexrd 10956 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ*)
7574adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → (𝑦 − 1) ∈ ℝ*)
76 peano2re 11078 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
7776rexrd 10956 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ*)
7877adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 1) ∈ ℝ*)
7962, 63, 64, 68, 72, 75, 78smfpimioompt 44207 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))} ∈ (𝑆t 𝐷))
8061, 79eqeltrd 2839 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷))
8156, 80jca 511 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷)))
82 imaeq2 5954 . . . . . . . . . . . . . 14 (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → (𝐹𝑒) = (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))))
8382eleq1d 2823 . . . . . . . . . . . . 13 (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷)))
8483, 1elrab2 3620 . . . . . . . . . . . 12 (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇 ↔ (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷)))
8581, 84sylibr 233 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇)
86 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ)
87 ltm1 11747 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 − 1) < 𝑦)
88 ltp1 11745 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
8974, 77, 86, 87, 88eliood 42926 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1)))
9089adantl 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1)))
91 nfv 1918 . . . . . . . . . . . 12 𝑒 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))
92 nfcv 2906 . . . . . . . . . . . 12 𝑒((𝑦 − 1)(,)(𝑦 + 1))
93 eleq2 2827 . . . . . . . . . . . 12 (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → (𝑦𝑒𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))))
9491, 92, 29, 93rspcef 42509 . . . . . . . . . . 11 ((((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))) → ∃𝑒𝑇 𝑦𝑒)
9585, 90, 94syl2anc 583 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → ∃𝑒𝑇 𝑦𝑒)
9695, 30sylibr 233 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 𝑇)
9796ex 412 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ → 𝑦 𝑇))
9851, 97impbid 211 . . . . . . 7 (𝜑 → (𝑦 𝑇𝑦 ∈ ℝ))
9926, 98alrimi 2209 . . . . . 6 (𝜑 → ∀𝑦(𝑦 𝑇𝑦 ∈ ℝ))
100 dfcleq 2731 . . . . . 6 ( 𝑇 = ℝ ↔ ∀𝑦(𝑦 𝑇𝑦 ∈ ℝ))
10199, 100sylibr 233 . . . . 5 (𝜑 𝑇 = ℝ)
102101difeq1d 4052 . . . 4 (𝜑 → ( 𝑇𝑥) = (ℝ ∖ 𝑥))
103102adantr 480 . . 3 ((𝜑𝑥𝑇) → ( 𝑇𝑥) = (ℝ ∖ 𝑥))
104 difss 4062 . . . . . . 7 (ℝ ∖ 𝑥) ⊆ ℝ
1052, 104ssexi 5241 . . . . . . . 8 (ℝ ∖ 𝑥) ∈ V
106 elpwg 4533 . . . . . . . 8 ((ℝ ∖ 𝑥) ∈ V → ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ↔ (ℝ ∖ 𝑥) ⊆ ℝ))
107105, 106ax-mp 5 . . . . . . 7 ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ↔ (ℝ ∖ 𝑥) ⊆ ℝ)
108104, 107mpbir 230 . . . . . 6 (ℝ ∖ 𝑥) ∈ 𝒫 ℝ
109108a1i 11 . . . . 5 ((𝜑𝑥𝑇) → (ℝ ∖ 𝑥) ∈ 𝒫 ℝ)
11057ffund 6588 . . . . . . . . 9 (𝜑 → Fun 𝐹)
111 difpreima 6924 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ (ℝ ∖ 𝑥)) = ((𝐹 “ ℝ) ∖ (𝐹𝑥)))
112110, 111syl 17 . . . . . . . 8 (𝜑 → (𝐹 “ (ℝ ∖ 𝑥)) = ((𝐹 “ ℝ) ∖ (𝐹𝑥)))
113 fimacnv 6606 . . . . . . . . . . 11 (𝐹:𝐷⟶ℝ → (𝐹 “ ℝ) = 𝐷)
11457, 113syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ ℝ) = 𝐷)
11510, 14restuni4 42559 . . . . . . . . . 10 (𝜑 (𝑆t 𝐷) = 𝐷)
116114, 115eqtr4d 2781 . . . . . . . . 9 (𝜑 → (𝐹 “ ℝ) = (𝑆t 𝐷))
117116difeq1d 4052 . . . . . . . 8 (𝜑 → ((𝐹 “ ℝ) ∖ (𝐹𝑥)) = ( (𝑆t 𝐷) ∖ (𝐹𝑥)))
118112, 117eqtrd 2778 . . . . . . 7 (𝜑 → (𝐹 “ (ℝ ∖ 𝑥)) = ( (𝑆t 𝐷) ∖ (𝐹𝑥)))
119118adantr 480 . . . . . 6 ((𝜑𝑥𝑇) → (𝐹 “ (ℝ ∖ 𝑥)) = ( (𝑆t 𝐷) ∖ (𝐹𝑥)))
12017adantr 480 . . . . . . 7 ((𝜑𝑥𝑇) → (𝑆t 𝐷) ∈ SAlg)
121 imaeq2 5954 . . . . . . . . . . . 12 (𝑒 = 𝑥 → (𝐹𝑒) = (𝐹𝑥))
122121eleq1d 2823 . . . . . . . . . . 11 (𝑒 = 𝑥 → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹𝑥) ∈ (𝑆t 𝐷)))
123122, 1elrab2 3620 . . . . . . . . . 10 (𝑥𝑇 ↔ (𝑥 ∈ 𝒫 ℝ ∧ (𝐹𝑥) ∈ (𝑆t 𝐷)))
124123biimpi 215 . . . . . . . . 9 (𝑥𝑇 → (𝑥 ∈ 𝒫 ℝ ∧ (𝐹𝑥) ∈ (𝑆t 𝐷)))
125124simprd 495 . . . . . . . 8 (𝑥𝑇 → (𝐹𝑥) ∈ (𝑆t 𝐷))
126125adantl 481 . . . . . . 7 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ (𝑆t 𝐷))
127120, 126saldifcld 43776 . . . . . 6 ((𝜑𝑥𝑇) → ( (𝑆t 𝐷) ∖ (𝐹𝑥)) ∈ (𝑆t 𝐷))
128119, 127eqeltrd 2839 . . . . 5 ((𝜑𝑥𝑇) → (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷))
129109, 128jca 511 . . . 4 ((𝜑𝑥𝑇) → ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ∧ (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷)))
130 imaeq2 5954 . . . . . 6 (𝑒 = (ℝ ∖ 𝑥) → (𝐹𝑒) = (𝐹 “ (ℝ ∖ 𝑥)))
131130eleq1d 2823 . . . . 5 (𝑒 = (ℝ ∖ 𝑥) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷)))
132131, 1elrab2 3620 . . . 4 ((ℝ ∖ 𝑥) ∈ 𝑇 ↔ ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ∧ (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷)))
133129, 132sylibr 233 . . 3 ((𝜑𝑥𝑇) → (ℝ ∖ 𝑥) ∈ 𝑇)
134103, 133eqeltrd 2839 . 2 ((𝜑𝑥𝑇) → ( 𝑇𝑥) ∈ 𝑇)
135 nnex 11909 . . . . . . . 8 ℕ ∈ V
136 fvex 6769 . . . . . . . 8 (𝑔𝑛) ∈ V
137135, 136iunex 7784 . . . . . . 7 𝑛 ∈ ℕ (𝑔𝑛) ∈ V
138137a1i 11 . . . . . 6 (𝑔:ℕ⟶𝑇 𝑛 ∈ ℕ (𝑔𝑛) ∈ V)
139 ffvelrn 6941 . . . . . . . 8 ((𝑔:ℕ⟶𝑇𝑛 ∈ ℕ) → (𝑔𝑛) ∈ 𝑇)
1401eleq2i 2830 . . . . . . . . . . 11 ((𝑔𝑛) ∈ 𝑇 ↔ (𝑔𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
141140biimpi 215 . . . . . . . . . 10 ((𝑔𝑛) ∈ 𝑇 → (𝑔𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
142 elrabi 3611 . . . . . . . . . 10 ((𝑔𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} → (𝑔𝑛) ∈ 𝒫 ℝ)
143141, 142syl 17 . . . . . . . . 9 ((𝑔𝑛) ∈ 𝑇 → (𝑔𝑛) ∈ 𝒫 ℝ)
144 elpwi 4539 . . . . . . . . 9 ((𝑔𝑛) ∈ 𝒫 ℝ → (𝑔𝑛) ⊆ ℝ)
145143, 144syl 17 . . . . . . . 8 ((𝑔𝑛) ∈ 𝑇 → (𝑔𝑛) ⊆ ℝ)
146139, 145syl 17 . . . . . . 7 ((𝑔:ℕ⟶𝑇𝑛 ∈ ℕ) → (𝑔𝑛) ⊆ ℝ)
147146iunssd 4976 . . . . . 6 (𝑔:ℕ⟶𝑇 𝑛 ∈ ℕ (𝑔𝑛) ⊆ ℝ)
148138, 147elpwd 4538 . . . . 5 (𝑔:ℕ⟶𝑇 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ)
149148adantl 481 . . . 4 ((𝜑𝑔:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ)
150 imaiun 7100 . . . . . 6 (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) = 𝑛 ∈ ℕ (𝐹 “ (𝑔𝑛))
151150a1i 11 . . . . 5 ((𝜑𝑔:ℕ⟶𝑇) → (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) = 𝑛 ∈ ℕ (𝐹 “ (𝑔𝑛)))
15217adantr 480 . . . . . 6 ((𝜑𝑔:ℕ⟶𝑇) → (𝑆t 𝐷) ∈ SAlg)
153 nnct 13629 . . . . . . 7 ℕ ≼ ω
154153a1i 11 . . . . . 6 ((𝜑𝑔:ℕ⟶𝑇) → ℕ ≼ ω)
155 imaeq2 5954 . . . . . . . . . . . 12 (𝑒 = (𝑔𝑛) → (𝐹𝑒) = (𝐹 “ (𝑔𝑛)))
156155eleq1d 2823 . . . . . . . . . . 11 (𝑒 = (𝑔𝑛) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
157156, 1elrab2 3620 . . . . . . . . . 10 ((𝑔𝑛) ∈ 𝑇 ↔ ((𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
158157biimpi 215 . . . . . . . . 9 ((𝑔𝑛) ∈ 𝑇 → ((𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
159158simprd 495 . . . . . . . 8 ((𝑔𝑛) ∈ 𝑇 → (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
160139, 159syl 17 . . . . . . 7 ((𝑔:ℕ⟶𝑇𝑛 ∈ ℕ) → (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
161160adantll 710 . . . . . 6 (((𝜑𝑔:ℕ⟶𝑇) ∧ 𝑛 ∈ ℕ) → (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
162152, 154, 161saliuncl 43753 . . . . 5 ((𝜑𝑔:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
163151, 162eqeltrd 2839 . . . 4 ((𝜑𝑔:ℕ⟶𝑇) → (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷))
164149, 163jca 511 . . 3 ((𝜑𝑔:ℕ⟶𝑇) → ( 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
165 imaeq2 5954 . . . . 5 (𝑒 = 𝑛 ∈ ℕ (𝑔𝑛) → (𝐹𝑒) = (𝐹 𝑛 ∈ ℕ (𝑔𝑛)))
166165eleq1d 2823 . . . 4 (𝑒 = 𝑛 ∈ ℕ (𝑔𝑛) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
167166, 1elrab2 3620 . . 3 ( 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝑇 ↔ ( 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
168164, 167sylibr 233 . 2 ((𝜑𝑔:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝑇)
1695, 24, 25, 134, 168issalnnd 43774 1 (𝜑𝑇 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836   ciun 4921   class class class wbr 5070  cmpt 5153  ccnv 5579  dom cdm 5580  cima 5583  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  ωcom 7687  cdom 8689  cr 10801  1c1 10803   + caddc 10805  *cxr 10939  cmin 11135  cn 11903  (,)cioo 13008  t crest 17048  SAlgcsalg 43739  SMblFncsmblfn 44123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-acn 9631  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ico 13014  df-fl 13440  df-rest 17050  df-salg 43740  df-smblfn 44124
This theorem is referenced by:  smfpimbor1lem1  44219  smfpimbor1lem2  44220
  Copyright terms: Public domain W3C validator