MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3lplem1 Structured version   Visualization version   GIF version

Theorem en3lplem1 9634
Description: Lemma for en3lp 9636. (Contributed by Alan Sare, 28-Oct-2011.)
Assertion
Ref Expression
en3lplem1 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem en3lplem1
StepHypRef Expression
1 simp3 1138 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶𝐴)
2 eleq2 2822 . . 3 (𝑥 = 𝐴 → (𝐶𝑥𝐶𝐴))
31, 2syl5ibrcom 247 . 2 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐴𝐶𝑥))
4 tpid3g 4752 . . . . 5 (𝐶𝐴𝐶 ∈ {𝐴, 𝐵, 𝐶})
543ad2ant3 1135 . . . 4 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
6 inelcm 4445 . . . 4 ((𝐶𝑥𝐶 ∈ {𝐴, 𝐵, 𝐶}) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)
75, 6sylan2 593 . . 3 ((𝐶𝑥 ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)
87expcom 413 . 2 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝐶𝑥 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
93, 8syld 47 1 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  wne 2931  cin 3930  c0 4313  {ctp 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-nul 4314  df-sn 4607  df-pr 4609  df-tp 4611
This theorem is referenced by:  en3lplem2  9635
  Copyright terms: Public domain W3C validator