![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en3lplem1 | Structured version Visualization version GIF version |
Description: Lemma for en3lp 8873. (Contributed by Alan Sare, 28-Oct-2011.) |
Ref | Expression |
---|---|
en3lplem1 | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1118 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐴) | |
2 | eleq2 2854 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐶 ∈ 𝑥 ↔ 𝐶 ∈ 𝐴)) | |
3 | 1, 2 | syl5ibrcom 239 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → 𝐶 ∈ 𝑥)) |
4 | tpid3g 4583 | . . . . 5 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
5 | 4 | 3ad2ant3 1115 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
6 | inelcm 4298 | . . . 4 ⊢ ((𝐶 ∈ 𝑥 ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) | |
7 | 5, 6 | sylan2 583 | . . 3 ⊢ ((𝐶 ∈ 𝑥 ∧ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) |
8 | 7 | expcom 406 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝐶 ∈ 𝑥 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
9 | 3, 8 | syld 47 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 ∩ cin 3830 ∅c0 4180 {ctp 4446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-v 3417 df-dif 3834 df-un 3836 df-in 3838 df-nul 4181 df-sn 4443 df-pr 4445 df-tp 4447 |
This theorem is referenced by: en3lplem2 8872 |
Copyright terms: Public domain | W3C validator |