Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en3lplem1 | Structured version Visualization version GIF version |
Description: Lemma for en3lp 9302. (Contributed by Alan Sare, 28-Oct-2011.) |
Ref | Expression |
---|---|
en3lplem1 | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1136 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐴) | |
2 | eleq2 2827 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐶 ∈ 𝑥 ↔ 𝐶 ∈ 𝐴)) | |
3 | 1, 2 | syl5ibrcom 246 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → 𝐶 ∈ 𝑥)) |
4 | tpid3g 4705 | . . . . 5 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
5 | 4 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
6 | inelcm 4395 | . . . 4 ⊢ ((𝐶 ∈ 𝑥 ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) | |
7 | 5, 6 | sylan2 592 | . . 3 ⊢ ((𝐶 ∈ 𝑥 ∧ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) |
8 | 7 | expcom 413 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝐶 ∈ 𝑥 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
9 | 3, 8 | syld 47 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∩ cin 3882 ∅c0 4253 {ctp 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-sn 4559 df-pr 4561 df-tp 4563 |
This theorem is referenced by: en3lplem2 9301 |
Copyright terms: Public domain | W3C validator |