| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en3lplem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for en3lp 9636. (Contributed by Alan Sare, 28-Oct-2011.) |
| Ref | Expression |
|---|---|
| en3lplem1 | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐴) | |
| 2 | eleq2 2822 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐶 ∈ 𝑥 ↔ 𝐶 ∈ 𝐴)) | |
| 3 | 1, 2 | syl5ibrcom 247 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → 𝐶 ∈ 𝑥)) |
| 4 | tpid3g 4752 | . . . . 5 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
| 5 | 4 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
| 6 | inelcm 4445 | . . . 4 ⊢ ((𝐶 ∈ 𝑥 ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) | |
| 7 | 5, 6 | sylan2 593 | . . 3 ⊢ ((𝐶 ∈ 𝑥 ∧ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) |
| 8 | 7 | expcom 413 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝐶 ∈ 𝑥 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
| 9 | 3, 8 | syld 47 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∩ cin 3930 ∅c0 4313 {ctp 4610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-nul 4314 df-sn 4607 df-pr 4609 df-tp 4611 |
| This theorem is referenced by: en3lplem2 9635 |
| Copyright terms: Public domain | W3C validator |