![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en3lplem1 | Structured version Visualization version GIF version |
Description: Lemma for en3lp 9611. (Contributed by Alan Sare, 28-Oct-2011.) |
Ref | Expression |
---|---|
en3lplem1 | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐴) | |
2 | eleq2 2822 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐶 ∈ 𝑥 ↔ 𝐶 ∈ 𝐴)) | |
3 | 1, 2 | syl5ibrcom 246 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → 𝐶 ∈ 𝑥)) |
4 | tpid3g 4776 | . . . . 5 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
5 | 4 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
6 | inelcm 4464 | . . . 4 ⊢ ((𝐶 ∈ 𝑥 ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) | |
7 | 5, 6 | sylan2 593 | . . 3 ⊢ ((𝐶 ∈ 𝑥 ∧ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) |
8 | 7 | expcom 414 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝐶 ∈ 𝑥 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
9 | 3, 8 | syld 47 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∩ cin 3947 ∅c0 4322 {ctp 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-nul 4323 df-sn 4629 df-pr 4631 df-tp 4633 |
This theorem is referenced by: en3lplem2 9610 |
Copyright terms: Public domain | W3C validator |