MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3lplem1 Structured version   Visualization version   GIF version

Theorem en3lplem1 9300
Description: Lemma for en3lp 9302. (Contributed by Alan Sare, 28-Oct-2011.)
Assertion
Ref Expression
en3lplem1 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem en3lplem1
StepHypRef Expression
1 simp3 1136 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶𝐴)
2 eleq2 2827 . . 3 (𝑥 = 𝐴 → (𝐶𝑥𝐶𝐴))
31, 2syl5ibrcom 246 . 2 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐴𝐶𝑥))
4 tpid3g 4705 . . . . 5 (𝐶𝐴𝐶 ∈ {𝐴, 𝐵, 𝐶})
543ad2ant3 1133 . . . 4 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
6 inelcm 4395 . . . 4 ((𝐶𝑥𝐶 ∈ {𝐴, 𝐵, 𝐶}) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)
75, 6sylan2 592 . . 3 ((𝐶𝑥 ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)
87expcom 413 . 2 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝐶𝑥 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
93, 8syld 47 1 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cin 3882  c0 4253  {ctp 4562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-sn 4559  df-pr 4561  df-tp 4563
This theorem is referenced by:  en3lplem2  9301
  Copyright terms: Public domain W3C validator