MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid3g Structured version   Visualization version   GIF version

Theorem tpid3g 4797
Description: Closed theorem form of tpid3 4798. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 30-Apr-2021.)
Assertion
Ref Expression
tpid3g (𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})

Proof of Theorem tpid3g
StepHypRef Expression
1 eqid 2740 . . 3 𝐴 = 𝐴
213mix3i 1335 . 2 (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐴)
3 eltpg 4709 . 2 (𝐴𝐵 → (𝐴 ∈ {𝐶, 𝐷, 𝐴} ↔ (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐴)))
42, 3mpbiri 258 1 (𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1086   = wceq 1537  wcel 2108  {ctp 4652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-sn 4649  df-pr 4651  df-tp 4653
This theorem is referenced by:  tpid3  4798  f1dom3fv3dif  7305  f1dom3el3dif  7306  en3lplem1  9681  en3lp  9683  tpf  14548  nb3grprlem1  29415  cplgr3v  29470  cshw1s2  32927  cyc3co2  33133  en3lplem1VD  44814  en3lpVD  44816  limsupequzlem  45643  etransclem48  46203
  Copyright terms: Public domain W3C validator