| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpid3g | Structured version Visualization version GIF version | ||
| Description: Closed theorem form of tpid3 4723. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 30-Apr-2021.) |
| Ref | Expression |
|---|---|
| tpid3g | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | 3mix3i 1336 | . 2 ⊢ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐴) |
| 3 | eltpg 4636 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶, 𝐷, 𝐴} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐴))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 {ctp 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 df-tp 4578 |
| This theorem is referenced by: tpid3 4723 f1dom3fv3dif 7202 f1dom3el3dif 7203 en3lplem1 9502 en3lp 9504 tpf 14406 nb3grprlem1 29358 cplgr3v 29413 cshw1s2 32941 cyc3co2 33109 en3lplem1VD 44945 en3lpVD 44947 limsupequzlem 45830 etransclem48 46390 |
| Copyright terms: Public domain | W3C validator |