MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid3g Structured version   Visualization version   GIF version

Theorem tpid3g 4722
Description: Closed theorem form of tpid3 4723. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 30-Apr-2021.)
Assertion
Ref Expression
tpid3g (𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})

Proof of Theorem tpid3g
StepHypRef Expression
1 eqid 2731 . . 3 𝐴 = 𝐴
213mix3i 1336 . 2 (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐴)
3 eltpg 4636 . 2 (𝐴𝐵 → (𝐴 ∈ {𝐶, 𝐷, 𝐴} ↔ (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐴)))
42, 3mpbiri 258 1 (𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085   = wceq 1541  wcel 2111  {ctp 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4574  df-pr 4576  df-tp 4578
This theorem is referenced by:  tpid3  4723  f1dom3fv3dif  7202  f1dom3el3dif  7203  en3lplem1  9502  en3lp  9504  tpf  14406  nb3grprlem1  29358  cplgr3v  29413  cshw1s2  32941  cyc3co2  33109  en3lplem1VD  44945  en3lpVD  44947  limsupequzlem  45830  etransclem48  46390
  Copyright terms: Public domain W3C validator