| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpid3g | Structured version Visualization version GIF version | ||
| Description: Closed theorem form of tpid3 4740. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 30-Apr-2021.) |
| Ref | Expression |
|---|---|
| tpid3g | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | 3mix3i 1336 | . 2 ⊢ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐴) |
| 3 | eltpg 4653 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶, 𝐷, 𝐴} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐴))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 {ctp 4596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-sn 4593 df-pr 4595 df-tp 4597 |
| This theorem is referenced by: tpid3 4740 f1dom3fv3dif 7246 f1dom3el3dif 7247 en3lplem1 9572 en3lp 9574 tpf 14471 nb3grprlem1 29314 cplgr3v 29369 cshw1s2 32889 cyc3co2 33104 en3lplem1VD 44839 en3lpVD 44841 limsupequzlem 45727 etransclem48 46287 |
| Copyright terms: Public domain | W3C validator |