![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpid3g | Structured version Visualization version GIF version |
Description: Closed theorem form of tpid3 4798. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 30-Apr-2021.) |
Ref | Expression |
---|---|
tpid3g | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | 3mix3i 1335 | . 2 ⊢ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐴) |
3 | eltpg 4709 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶, 𝐷, 𝐴} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐴))) | |
4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1086 = wceq 1537 ∈ wcel 2108 {ctp 4652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 df-tp 4653 |
This theorem is referenced by: tpid3 4798 f1dom3fv3dif 7305 f1dom3el3dif 7306 en3lplem1 9681 en3lp 9683 tpf 14548 nb3grprlem1 29415 cplgr3v 29470 cshw1s2 32927 cyc3co2 33133 en3lplem1VD 44814 en3lpVD 44816 limsupequzlem 45643 etransclem48 46203 |
Copyright terms: Public domain | W3C validator |