![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpid3g | Structured version Visualization version GIF version |
Description: Closed theorem form of tpid3 4540. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 30-Apr-2021.) |
Ref | Expression |
---|---|
tpid3g | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | 3mix3i 1391 | . 2 ⊢ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐴) |
3 | eltpg 4454 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶, 𝐷, 𝐴} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐴))) | |
4 | 2, 3 | mpbiri 250 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1070 = wceq 1601 ∈ wcel 2107 {ctp 4402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-v 3400 df-un 3797 df-sn 4399 df-pr 4401 df-tp 4403 |
This theorem is referenced by: tpid3 4540 f1dom3fv3dif 6799 f1dom3el3dif 6800 en3lplem1 8806 en3lp 8808 nb3grprlem1 26732 cplgr3v 26787 en3lplem1VD 40022 en3lpVD 40024 limsupequzlem 40872 etransclem48 41436 |
Copyright terms: Public domain | W3C validator |