MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid3g Structured version   Visualization version   GIF version

Theorem tpid3g 4705
Description: Closed theorem form of tpid3 4706. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 30-Apr-2021.)
Assertion
Ref Expression
tpid3g (𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})

Proof of Theorem tpid3g
StepHypRef Expression
1 eqid 2738 . . 3 𝐴 = 𝐴
213mix3i 1333 . 2 (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐴)
3 eltpg 4618 . 2 (𝐴𝐵 → (𝐴 ∈ {𝐶, 𝐷, 𝐴} ↔ (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐴)))
42, 3mpbiri 257 1 (𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1084   = wceq 1539  wcel 2108  {ctp 4562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-sn 4559  df-pr 4561  df-tp 4563
This theorem is referenced by:  tpid3  4706  f1dom3fv3dif  7122  f1dom3el3dif  7123  en3lplem1  9300  en3lp  9302  nb3grprlem1  27650  cplgr3v  27705  cshw1s2  31134  cyc3co2  31309  en3lplem1VD  42352  en3lpVD  42354  limsupequzlem  43153  etransclem48  43713
  Copyright terms: Public domain W3C validator