Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpid3g | Structured version Visualization version GIF version |
Description: Closed theorem form of tpid3 4709. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 30-Apr-2021.) |
Ref | Expression |
---|---|
tpid3g | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | 3mix3i 1334 | . 2 ⊢ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐴) |
3 | eltpg 4621 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶, 𝐷, 𝐴} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐴))) | |
4 | 2, 3 | mpbiri 257 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1539 ∈ wcel 2106 {ctp 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-sn 4562 df-pr 4564 df-tp 4566 |
This theorem is referenced by: tpid3 4709 f1dom3fv3dif 7141 f1dom3el3dif 7142 en3lplem1 9370 en3lp 9372 nb3grprlem1 27747 cplgr3v 27802 cshw1s2 31232 cyc3co2 31407 en3lplem1VD 42463 en3lpVD 42465 limsupequzlem 43263 etransclem48 43823 |
Copyright terms: Public domain | W3C validator |