| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnel | Structured version Visualization version GIF version | ||
| Description: A class cannot be an element of one of its elements. (Contributed by AV, 14-Jun-2022.) |
| Ref | Expression |
|---|---|
| elnel | ⊢ (𝐴 ∈ 𝐵 → 𝐵 ∉ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnotel 9569 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴) | |
| 2 | df-nel 3031 | . 2 ⊢ (𝐵 ∉ 𝐴 ↔ ¬ 𝐵 ∈ 𝐴) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ∉ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∉ wnel 3030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-reg 9551 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-eprel 5540 df-fr 5593 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |