MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnel Structured version   Visualization version   GIF version

Theorem elnel 9658
Description: A class cannot be an element of one of its elements. (Contributed by AV, 14-Jun-2022.)
Assertion
Ref Expression
elnel (𝐴𝐵𝐵𝐴)

Proof of Theorem elnel
StepHypRef Expression
1 elnotel 9657 . 2 (𝐴𝐵 → ¬ 𝐵𝐴)
2 df-nel 3047 . 2 (𝐵𝐴 ↔ ¬ 𝐵𝐴)
31, 2sylibr 234 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  wnel 3046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-reg 9639
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-eprel 5593  df-fr 5645
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator