![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnel | Structured version Visualization version GIF version |
Description: A class cannot be an element of one of its elements. (Contributed by AV, 14-Jun-2022.) |
Ref | Expression |
---|---|
elnel | ⊢ (𝐴 ∈ 𝐵 → 𝐵 ∉ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnotel 9633 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴) | |
2 | df-nel 3044 | . 2 ⊢ (𝐵 ∉ 𝐴 ↔ ¬ 𝐵 ∈ 𝐴) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ∉ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2099 ∉ wnel 3043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-reg 9615 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-eprel 5582 df-fr 5633 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |