Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elnel | Structured version Visualization version GIF version |
Description: A class cannot be an element of one of its elements. (Contributed by AV, 14-Jun-2022.) |
Ref | Expression |
---|---|
elnel | ⊢ (𝐴 ∈ 𝐵 → 𝐵 ∉ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnotel 9368 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴) | |
2 | df-nel 3050 | . 2 ⊢ (𝐵 ∉ 𝐴 ↔ ¬ 𝐵 ∈ 𝐴) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ∉ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ∉ wnel 3049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-reg 9351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-fr 5544 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |