![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnel | Structured version Visualization version GIF version |
Description: A class cannot be an element of one of its elements. (Contributed by AV, 14-Jun-2022.) |
Ref | Expression |
---|---|
elnel | ⊢ (𝐴 ∈ 𝐵 → 𝐵 ∉ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnotel 9657 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴) | |
2 | df-nel 3047 | . 2 ⊢ (𝐵 ∉ 𝐴 ↔ ¬ 𝐵 ∈ 𝐴) | |
3 | 1, 2 | sylibr 234 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ∉ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∉ wnel 3046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-reg 9639 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-eprel 5593 df-fr 5645 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |