| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnel | Structured version Visualization version GIF version | ||
| Description: A class cannot be an element of one of its elements. (Contributed by AV, 14-Jun-2022.) |
| Ref | Expression |
|---|---|
| elnel | ⊢ (𝐴 ∈ 𝐵 → 𝐵 ∉ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnotel 9500 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴) | |
| 2 | df-nel 3033 | . 2 ⊢ (𝐵 ∉ 𝐴 ↔ ¬ 𝐵 ∈ 𝐴) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ∉ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ∉ wnel 3032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-eprel 5514 df-fr 5567 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |