Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem34 Structured version   Visualization version   GIF version

Theorem stoweidlem34 43465
Description: This lemma proves that for all 𝑡 in 𝑇 there is a 𝑗 as in the proof of [BrosowskiDeutsh] p. 91 (at the bottom of page 91 and at the top of page 92): (j-4/3) * ε < f(t) <= (j-1/3) * ε , g(t) < (j+1/3) * ε, and g(t) > (j-4/3) * ε. Here 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem34.1 𝑡𝐹
stoweidlem34.2 𝑗𝜑
stoweidlem34.3 𝑡𝜑
stoweidlem34.4 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
stoweidlem34.5 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
stoweidlem34.6 𝐽 = (𝑡𝑇 ↦ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
stoweidlem34.7 (𝜑𝑁 ∈ ℕ)
stoweidlem34.8 (𝜑𝑇 ∈ V)
stoweidlem34.9 (𝜑𝐹:𝑇⟶ℝ)
stoweidlem34.10 ((𝜑𝑡𝑇) → 0 ≤ (𝐹𝑡))
stoweidlem34.11 ((𝜑𝑡𝑇) → (𝐹𝑡) < ((𝑁 − 1) · 𝐸))
stoweidlem34.12 (𝜑𝐸 ∈ ℝ+)
stoweidlem34.13 (𝜑𝐸 < (1 / 3))
stoweidlem34.14 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑋𝑗):𝑇⟶ℝ)
stoweidlem34.15 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑗)‘𝑡))
stoweidlem34.16 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡𝑇) → ((𝑋𝑗)‘𝑡) ≤ 1)
stoweidlem34.17 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑗)) → ((𝑋𝑗)‘𝑡) < (𝐸 / 𝑁))
stoweidlem34.18 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑗)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑗)‘𝑡))
Assertion
Ref Expression
stoweidlem34 (𝜑 → ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))))
Distinct variable groups:   𝑖,𝑗,𝑡,𝐸   𝐷,𝑖   𝑖,𝐽   𝑖,𝑁,𝑗,𝑡   𝑇,𝑖,𝑗,𝑡   𝜑,𝑖   𝑗,𝐹   𝑗,𝑋,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑗)   𝐵(𝑡,𝑖,𝑗)   𝐷(𝑡,𝑗)   𝐹(𝑡,𝑖)   𝐽(𝑡,𝑗)   𝑋(𝑖)

Proof of Theorem stoweidlem34
Dummy variables 𝑘 𝑙 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem34.3 . 2 𝑡𝜑
2 simpr 484 . . . . . . . 8 ((𝜑𝑡𝑇) → 𝑡𝑇)
3 ovex 7288 . . . . . . . . 9 (1...𝑁) ∈ V
43rabex 5251 . . . . . . . 8 {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)} ∈ V
5 stoweidlem34.6 . . . . . . . . 9 𝐽 = (𝑡𝑇 ↦ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
65fvmpt2 6868 . . . . . . . 8 ((𝑡𝑇 ∧ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)} ∈ V) → (𝐽𝑡) = {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
72, 4, 6sylancl 585 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐽𝑡) = {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
8 ssrab2 4009 . . . . . . 7 {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)} ⊆ (1...𝑁)
97, 8eqsstrdi 3971 . . . . . 6 ((𝜑𝑡𝑇) → (𝐽𝑡) ⊆ (1...𝑁))
10 elfznn 13214 . . . . . . 7 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
1110ssriv 3921 . . . . . 6 (1...𝑁) ⊆ ℕ
129, 11sstrdi 3929 . . . . 5 ((𝜑𝑡𝑇) → (𝐽𝑡) ⊆ ℕ)
13 nnssre 11907 . . . . 5 ℕ ⊆ ℝ
1412, 13sstrdi 3929 . . . 4 ((𝜑𝑡𝑇) → (𝐽𝑡) ⊆ ℝ)
15 stoweidlem34.7 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ)
1615adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑡𝑇) → 𝑁 ∈ ℕ)
17 nnuz 12550 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
1816, 17eleqtrdi 2849 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → 𝑁 ∈ (ℤ‘1))
19 eluzfz2 13193 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
2018, 19syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → 𝑁 ∈ (1...𝑁))
21 stoweidlem34.11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → (𝐹𝑡) < ((𝑁 − 1) · 𝐸))
22 3re 11983 . . . . . . . . . . . . . . . . . . . . 21 3 ∈ ℝ
23 3ne0 12009 . . . . . . . . . . . . . . . . . . . . 21 3 ≠ 0
2422, 23rereccli 11670 . . . . . . . . . . . . . . . . . . . 20 (1 / 3) ∈ ℝ
2524a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝑇) → (1 / 3) ∈ ℝ)
26 1red 10907 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
2716nnred 11918 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝑇) → 𝑁 ∈ ℝ)
28 1lt3 12076 . . . . . . . . . . . . . . . . . . . . 21 1 < 3
2922, 28pm3.2i 470 . . . . . . . . . . . . . . . . . . . 20 (3 ∈ ℝ ∧ 1 < 3)
30 recgt1i 11802 . . . . . . . . . . . . . . . . . . . . 21 ((3 ∈ ℝ ∧ 1 < 3) → (0 < (1 / 3) ∧ (1 / 3) < 1))
3130simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((3 ∈ ℝ ∧ 1 < 3) → (1 / 3) < 1)
3229, 31mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝑇) → (1 / 3) < 1)
3325, 26, 27, 32ltsub2dd 11518 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡𝑇) → (𝑁 − 1) < (𝑁 − (1 / 3)))
3427, 26resubcld 11333 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝑇) → (𝑁 − 1) ∈ ℝ)
3527, 25resubcld 11333 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝑇) → (𝑁 − (1 / 3)) ∈ ℝ)
36 stoweidlem34.12 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸 ∈ ℝ+)
3736rpred 12701 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐸 ∈ ℝ)
3837adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝑇) → 𝐸 ∈ ℝ)
3936rpgt0d 12704 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 < 𝐸)
4039adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝑇) → 0 < 𝐸)
41 ltmul1 11755 . . . . . . . . . . . . . . . . . . 19 (((𝑁 − 1) ∈ ℝ ∧ (𝑁 − (1 / 3)) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → ((𝑁 − 1) < (𝑁 − (1 / 3)) ↔ ((𝑁 − 1) · 𝐸) < ((𝑁 − (1 / 3)) · 𝐸)))
4234, 35, 38, 40, 41syl112anc 1372 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡𝑇) → ((𝑁 − 1) < (𝑁 − (1 / 3)) ↔ ((𝑁 − 1) · 𝐸) < ((𝑁 − (1 / 3)) · 𝐸)))
4333, 42mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → ((𝑁 − 1) · 𝐸) < ((𝑁 − (1 / 3)) · 𝐸))
4421, 43jca 511 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → ((𝐹𝑡) < ((𝑁 − 1) · 𝐸) ∧ ((𝑁 − 1) · 𝐸) < ((𝑁 − (1 / 3)) · 𝐸)))
45 stoweidlem34.9 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:𝑇⟶ℝ)
4645ffvelrnda 6943 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
4734, 38remulcld 10936 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → ((𝑁 − 1) · 𝐸) ∈ ℝ)
4835, 38remulcld 10936 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → ((𝑁 − (1 / 3)) · 𝐸) ∈ ℝ)
49 lttr 10982 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑡) ∈ ℝ ∧ ((𝑁 − 1) · 𝐸) ∈ ℝ ∧ ((𝑁 − (1 / 3)) · 𝐸) ∈ ℝ) → (((𝐹𝑡) < ((𝑁 − 1) · 𝐸) ∧ ((𝑁 − 1) · 𝐸) < ((𝑁 − (1 / 3)) · 𝐸)) → (𝐹𝑡) < ((𝑁 − (1 / 3)) · 𝐸)))
50 ltle 10994 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑡) ∈ ℝ ∧ ((𝑁 − (1 / 3)) · 𝐸) ∈ ℝ) → ((𝐹𝑡) < ((𝑁 − (1 / 3)) · 𝐸) → (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)))
51503adant2 1129 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑡) ∈ ℝ ∧ ((𝑁 − 1) · 𝐸) ∈ ℝ ∧ ((𝑁 − (1 / 3)) · 𝐸) ∈ ℝ) → ((𝐹𝑡) < ((𝑁 − (1 / 3)) · 𝐸) → (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)))
5249, 51syld 47 . . . . . . . . . . . . . . . . 17 (((𝐹𝑡) ∈ ℝ ∧ ((𝑁 − 1) · 𝐸) ∈ ℝ ∧ ((𝑁 − (1 / 3)) · 𝐸) ∈ ℝ) → (((𝐹𝑡) < ((𝑁 − 1) · 𝐸) ∧ ((𝑁 − 1) · 𝐸) < ((𝑁 − (1 / 3)) · 𝐸)) → (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)))
5346, 47, 48, 52syl3anc 1369 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → (((𝐹𝑡) < ((𝑁 − 1) · 𝐸) ∧ ((𝑁 − 1) · 𝐸) < ((𝑁 − (1 / 3)) · 𝐸)) → (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)))
5444, 53mpd 15 . . . . . . . . . . . . . . 15 ((𝜑𝑡𝑇) → (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸))
55 rabid 3304 . . . . . . . . . . . . . . 15 (𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)} ↔ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)))
562, 54, 55sylanbrc 582 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)})
57 stoweidlem34.4 . . . . . . . . . . . . . . . 16 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
58 oveq1 7262 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑁 → (𝑗 − (1 / 3)) = (𝑁 − (1 / 3)))
5958oveq1d 7270 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑁 → ((𝑗 − (1 / 3)) · 𝐸) = ((𝑁 − (1 / 3)) · 𝐸))
6059breq2d 5082 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑁 → ((𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)))
6160rabbidv 3404 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑁 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)})
62 nnnn0 12170 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
63 nn0uz 12549 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘0)
6462, 63eleqtrdi 2849 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘0))
65 eluzfz2 13193 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
6615, 64, 653syl 18 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ (0...𝑁))
67 stoweidlem34.8 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ∈ V)
68 rabexg 5250 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ V → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)} ∈ V)
6967, 68syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)} ∈ V)
7057, 61, 66, 69fvmptd3 6880 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝑁) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)})
7170adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → (𝐷𝑁) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)})
7256, 71eleqtrrd 2842 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝐷𝑁))
73 nfcv 2906 . . . . . . . . . . . . . 14 𝑗𝑁
74 nfcv 2906 . . . . . . . . . . . . . 14 𝑗(1...𝑁)
75 nfmpt1 5178 . . . . . . . . . . . . . . . . 17 𝑗(𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
7657, 75nfcxfr 2904 . . . . . . . . . . . . . . . 16 𝑗𝐷
7776, 73nffv 6766 . . . . . . . . . . . . . . 15 𝑗(𝐷𝑁)
7877nfcri 2893 . . . . . . . . . . . . . 14 𝑗 𝑡 ∈ (𝐷𝑁)
79 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑗 = 𝑁 → (𝐷𝑗) = (𝐷𝑁))
8079eleq2d 2824 . . . . . . . . . . . . . 14 (𝑗 = 𝑁 → (𝑡 ∈ (𝐷𝑗) ↔ 𝑡 ∈ (𝐷𝑁)))
8173, 74, 78, 80elrabf 3613 . . . . . . . . . . . . 13 (𝑁 ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)} ↔ (𝑁 ∈ (1...𝑁) ∧ 𝑡 ∈ (𝐷𝑁)))
8220, 72, 81sylanbrc 582 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → 𝑁 ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
8382, 7eleqtrrd 2842 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 𝑁 ∈ (𝐽𝑡))
84 ne0i 4265 . . . . . . . . . . 11 (𝑁 ∈ (𝐽𝑡) → (𝐽𝑡) ≠ ∅)
8583, 84syl 17 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝐽𝑡) ≠ ∅)
86 nnwo 12582 . . . . . . . . . . 11 (((𝐽𝑡) ⊆ ℕ ∧ (𝐽𝑡) ≠ ∅) → ∃𝑖 ∈ (𝐽𝑡)∀𝑘 ∈ (𝐽𝑡)𝑖𝑘)
87 nfcv 2906 . . . . . . . . . . . 12 𝑖(𝐽𝑡)
88 nfcv 2906 . . . . . . . . . . . . . . 15 𝑗𝑇
89 nfrab1 3310 . . . . . . . . . . . . . . 15 𝑗{𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)}
9088, 89nfmpt 5177 . . . . . . . . . . . . . 14 𝑗(𝑡𝑇 ↦ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
915, 90nfcxfr 2904 . . . . . . . . . . . . 13 𝑗𝐽
92 nfcv 2906 . . . . . . . . . . . . 13 𝑗𝑡
9391, 92nffv 6766 . . . . . . . . . . . 12 𝑗(𝐽𝑡)
94 nfv 1918 . . . . . . . . . . . . 13 𝑗 𝑖𝑘
9593, 94nfralw 3149 . . . . . . . . . . . 12 𝑗𝑘 ∈ (𝐽𝑡)𝑖𝑘
96 nfv 1918 . . . . . . . . . . . 12 𝑖𝑘 ∈ (𝐽𝑡)𝑗𝑘
97 breq1 5073 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑖𝑘𝑗𝑘))
9897ralbidv 3120 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (∀𝑘 ∈ (𝐽𝑡)𝑖𝑘 ↔ ∀𝑘 ∈ (𝐽𝑡)𝑗𝑘))
9987, 93, 95, 96, 98cbvrexfw 3360 . . . . . . . . . . 11 (∃𝑖 ∈ (𝐽𝑡)∀𝑘 ∈ (𝐽𝑡)𝑖𝑘 ↔ ∃𝑗 ∈ (𝐽𝑡)∀𝑘 ∈ (𝐽𝑡)𝑗𝑘)
10086, 99sylib 217 . . . . . . . . . 10 (((𝐽𝑡) ⊆ ℕ ∧ (𝐽𝑡) ≠ ∅) → ∃𝑗 ∈ (𝐽𝑡)∀𝑘 ∈ (𝐽𝑡)𝑗𝑘)
10112, 85, 100syl2anc 583 . . . . . . . . 9 ((𝜑𝑡𝑇) → ∃𝑗 ∈ (𝐽𝑡)∀𝑘 ∈ (𝐽𝑡)𝑗𝑘)
102 stoweidlem34.2 . . . . . . . . . . 11 𝑗𝜑
103 nfv 1918 . . . . . . . . . . 11 𝑗 𝑡𝑇
104102, 103nfan 1903 . . . . . . . . . 10 𝑗(𝜑𝑡𝑇)
1057eleq2d 2824 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → (𝑗 ∈ (𝐽𝑡) ↔ 𝑗 ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)}))
106105biimpa 476 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 𝑗 ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
107 rabid 3304 . . . . . . . . . . . . . . 15 (𝑗 ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)} ↔ (𝑗 ∈ (1...𝑁) ∧ 𝑡 ∈ (𝐷𝑗)))
108106, 107sylib 217 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → (𝑗 ∈ (1...𝑁) ∧ 𝑡 ∈ (𝐷𝑗)))
109108simprd 495 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 𝑡 ∈ (𝐷𝑗))
110109adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ ∀𝑘 ∈ (𝐽𝑡)𝑗𝑘) → 𝑡 ∈ (𝐷𝑗))
111 simp3 1136 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → 𝑡 ∈ (𝐷‘(𝑗 − 1)))
112 simp1l 1195 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → 𝜑)
113 noel 4261 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ¬ 𝑡 ∈ ∅
114 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = 1 → (𝑗 − 1) = (1 − 1))
115 1m1e0 11975 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (1 − 1) = 0
116114, 115eqtrdi 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = 1 → (𝑗 − 1) = 0)
117116fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 = 1 → (𝐷‘(𝑗 − 1)) = (𝐷‘0))
11822a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑡𝑇) → 3 ∈ ℝ)
11923a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑡𝑇) → 3 ≠ 0)
12026, 118, 119redivcld 11733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑡𝑇) → (1 / 3) ∈ ℝ)
121120renegcld 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑡𝑇) → -(1 / 3) ∈ ℝ)
122121, 38remulcld 10936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑡𝑇) → (-(1 / 3) · 𝐸) ∈ ℝ)
123 0red 10909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑡𝑇) → 0 ∈ ℝ)
124 3pos 12008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 0 < 3
12522, 124recgt0ii 11811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 0 < (1 / 3)
126 lt0neg2 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((1 / 3) ∈ ℝ → (0 < (1 / 3) ↔ -(1 / 3) < 0))
12724, 126ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (0 < (1 / 3) ↔ -(1 / 3) < 0)
128125, 127mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 -(1 / 3) < 0
129 ltmul1 11755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((-(1 / 3) ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (-(1 / 3) < 0 ↔ (-(1 / 3) · 𝐸) < (0 · 𝐸)))
130121, 123, 38, 40, 129syl112anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑡𝑇) → (-(1 / 3) < 0 ↔ (-(1 / 3) · 𝐸) < (0 · 𝐸)))
131128, 130mpbii 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑡𝑇) → (-(1 / 3) · 𝐸) < (0 · 𝐸))
132 mul02lem2 11082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐸 ∈ ℝ → (0 · 𝐸) = 0)
13338, 132syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑡𝑇) → (0 · 𝐸) = 0)
134131, 133breqtrd 5096 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑡𝑇) → (-(1 / 3) · 𝐸) < 0)
135 stoweidlem34.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑡𝑇) → 0 ≤ (𝐹𝑡))
136122, 123, 46, 134, 135ltletrd 11065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑡𝑇) → (-(1 / 3) · 𝐸) < (𝐹𝑡))
137122, 46ltnled 11052 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑡𝑇) → ((-(1 / 3) · 𝐸) < (𝐹𝑡) ↔ ¬ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)))
138136, 137mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑡𝑇) → ¬ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸))
139 nan 826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 → ¬ (𝑡𝑇 ∧ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸))) ↔ ((𝜑𝑡𝑇) → ¬ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)))
140138, 139mpbir 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ¬ (𝑡𝑇 ∧ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)))
141 rabid 3304 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)} ↔ (𝑡𝑇 ∧ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)))
142140, 141sylnibr 328 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → ¬ 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)})
143 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 = 0 → (𝑗 − (1 / 3)) = (0 − (1 / 3)))
144 df-neg 11138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 -(1 / 3) = (0 − (1 / 3))
145143, 144eqtr4di 2797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑗 = 0 → (𝑗 − (1 / 3)) = -(1 / 3))
146145oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑗 = 0 → ((𝑗 − (1 / 3)) · 𝐸) = (-(1 / 3) · 𝐸))
147146breq2d 5082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑗 = 0 → ((𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)))
148147rabbidv 3404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = 0 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)})
14915nnnn0d 12223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝑁 ∈ ℕ0)
150 elnn0uz 12552 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
151149, 150sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝑁 ∈ (ℤ‘0))
152 eluzfz1 13192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ (ℤ‘0) → 0 ∈ (0...𝑁))
153151, 152syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → 0 ∈ (0...𝑁))
154 rabexg 5250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑇 ∈ V → {𝑡𝑇 ∣ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)} ∈ V)
15567, 154syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)} ∈ V)
15657, 148, 153, 155fvmptd3 6880 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝐷‘0) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)})
157142, 156neleqtrrd 2861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ¬ 𝑡 ∈ (𝐷‘0))
1581, 157alrimi 2209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ∀𝑡 ¬ 𝑡 ∈ (𝐷‘0))
159 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑡(0...𝑁)
160 nfrab1 3310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑡{𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}
161159, 160nfmpt 5177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑡(𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
16257, 161nfcxfr 2904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑡𝐷
163 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑡0
164162, 163nffv 6766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑡(𝐷‘0)
165164eq0f 4271 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐷‘0) = ∅ ↔ ∀𝑡 ¬ 𝑡 ∈ (𝐷‘0))
166158, 165sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐷‘0) = ∅)
167117, 166sylan9eqr 2801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑗 = 1) → (𝐷‘(𝑗 − 1)) = ∅)
168167eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 = 1) → (𝑡 ∈ (𝐷‘(𝑗 − 1)) ↔ 𝑡 ∈ ∅))
169113, 168mtbiri 326 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 = 1) → ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))
170169ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑗 = 1 → ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1))))
171170con2d 134 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑡 ∈ (𝐷‘(𝑗 − 1)) → ¬ 𝑗 = 1))
172112, 111, 171sylc 65 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → ¬ 𝑗 = 1)
173 simplll 771 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ ¬ 𝑗 = 1) → 𝜑)
174105, 107bitrdi 286 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑡𝑇) → (𝑗 ∈ (𝐽𝑡) ↔ (𝑗 ∈ (1...𝑁) ∧ 𝑡 ∈ (𝐷𝑗))))
175174simprbda 498 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 𝑗 ∈ (1...𝑁))
17615, 17eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑁 ∈ (ℤ‘1))
177176adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗 ∈ (𝐽𝑡)) → 𝑁 ∈ (ℤ‘1))
178 elfzp12 13264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ (ℤ‘1) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 = 1 ∨ 𝑗 ∈ ((1 + 1)...𝑁))))
179177, 178syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗 ∈ (𝐽𝑡)) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 = 1 ∨ 𝑗 ∈ ((1 + 1)...𝑁))))
180179adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 = 1 ∨ 𝑗 ∈ ((1 + 1)...𝑁))))
181175, 180mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → (𝑗 = 1 ∨ 𝑗 ∈ ((1 + 1)...𝑁)))
182181orcanai 999 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ ¬ 𝑗 = 1) → 𝑗 ∈ ((1 + 1)...𝑁))
183 fzssp1 13228 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1...(𝑁 − 1)) ⊆ (1...((𝑁 − 1) + 1))
18415nncnd 11919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑁 ∈ ℂ)
185 1cnd 10901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → 1 ∈ ℂ)
186184, 185npcand 11266 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
187186oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁))
188183, 187sseqtrid 3969 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
189188adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → (1...(𝑁 − 1)) ⊆ (1...𝑁))
190 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → 𝑗 ∈ ((1 + 1)...𝑁))
191 1z 12280 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1 ∈ ℤ
192 zaddcl 12290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → (1 + 1) ∈ ℤ)
193191, 191, 192mp2an 688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (1 + 1) ∈ ℤ
194193a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → (1 + 1) ∈ ℤ)
19515nnzd 12354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑁 ∈ ℤ)
196195adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → 𝑁 ∈ ℤ)
197 elfzelz 13185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 ∈ ((1 + 1)...𝑁) → 𝑗 ∈ ℤ)
198197adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → 𝑗 ∈ ℤ)
199 1zzd 12281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → 1 ∈ ℤ)
200 fzsubel 13221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((1 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑗 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑗 ∈ ((1 + 1)...𝑁) ↔ (𝑗 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1))))
201194, 196, 198, 199, 200syl22anc 835 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → (𝑗 ∈ ((1 + 1)...𝑁) ↔ (𝑗 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1))))
202190, 201mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → (𝑗 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1)))
203 ax-1cn 10860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 ∈ ℂ
204203, 203pncan3oi 11167 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((1 + 1) − 1) = 1
205204oveq1i 7265 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1 + 1) − 1)...(𝑁 − 1)) = (1...(𝑁 − 1))
206202, 205eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → (𝑗 − 1) ∈ (1...(𝑁 − 1)))
207189, 206sseldd 3918 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → (𝑗 − 1) ∈ (1...𝑁))
208173, 182, 207syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ ¬ 𝑗 = 1) → (𝑗 − 1) ∈ (1...𝑁))
209208ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → (¬ 𝑗 = 1 → (𝑗 − 1) ∈ (1...𝑁)))
2102093adant3 1130 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → (¬ 𝑗 = 1 → (𝑗 − 1) ∈ (1...𝑁)))
211172, 210mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → (𝑗 − 1) ∈ (1...𝑁))
212 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝐷𝑖) = (𝐷‘(𝑗 − 1)))
213212eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑗 − 1) → (𝑡 ∈ (𝐷𝑖) ↔ 𝑡 ∈ (𝐷‘(𝑗 − 1))))
214213elrab3 3618 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 − 1) ∈ (1...𝑁) → ((𝑗 − 1) ∈ {𝑖 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑖)} ↔ 𝑡 ∈ (𝐷‘(𝑗 − 1))))
215211, 214syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → ((𝑗 − 1) ∈ {𝑖 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑖)} ↔ 𝑡 ∈ (𝐷‘(𝑗 − 1))))
216111, 215mpbird 256 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → (𝑗 − 1) ∈ {𝑖 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑖)})
217 nfcv 2906 . . . . . . . . . . . . . . . . . . . 20 𝑖(1...𝑁)
218 nfv 1918 . . . . . . . . . . . . . . . . . . . 20 𝑖 𝑡 ∈ (𝐷𝑗)
219 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . 22 𝑗𝑖
22076, 219nffv 6766 . . . . . . . . . . . . . . . . . . . . 21 𝑗(𝐷𝑖)
221220nfcri 2893 . . . . . . . . . . . . . . . . . . . 20 𝑗 𝑡 ∈ (𝐷𝑖)
222 fveq2 6756 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → (𝐷𝑗) = (𝐷𝑖))
223222eleq2d 2824 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (𝑡 ∈ (𝐷𝑗) ↔ 𝑡 ∈ (𝐷𝑖)))
22474, 217, 218, 221, 223cbvrabw 3414 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)} = {𝑖 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑖)}
225216, 224eleqtrrdi 2850 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → (𝑗 − 1) ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
22673ad2ant1 1131 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → (𝐽𝑡) = {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
227225, 226eleqtrrd 2842 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → (𝑗 − 1) ∈ (𝐽𝑡))
228 elfzelz 13185 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (1...𝑁) → 𝑗 ∈ ℤ)
229 zre 12253 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℤ → 𝑗 ∈ ℝ)
230175, 228, 2293syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 𝑗 ∈ ℝ)
2312303adant3 1130 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → 𝑗 ∈ ℝ)
232 peano2rem 11218 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℝ → (𝑗 − 1) ∈ ℝ)
233 ltm1 11747 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℝ → (𝑗 − 1) < 𝑗)
234233adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℝ ∧ (𝑗 − 1) ∈ ℝ) → (𝑗 − 1) < 𝑗)
235 ltnle 10985 . . . . . . . . . . . . . . . . . . . 20 (((𝑗 − 1) ∈ ℝ ∧ 𝑗 ∈ ℝ) → ((𝑗 − 1) < 𝑗 ↔ ¬ 𝑗 ≤ (𝑗 − 1)))
236235ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℝ ∧ (𝑗 − 1) ∈ ℝ) → ((𝑗 − 1) < 𝑗 ↔ ¬ 𝑗 ≤ (𝑗 − 1)))
237234, 236mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℝ ∧ (𝑗 − 1) ∈ ℝ) → ¬ 𝑗 ≤ (𝑗 − 1))
238231, 232, 237syl2anc2 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → ¬ 𝑗 ≤ (𝑗 − 1))
239 breq2 5074 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑗 − 1) → (𝑗𝑘𝑗 ≤ (𝑗 − 1)))
240239notbid 317 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑗 − 1) → (¬ 𝑗𝑘 ↔ ¬ 𝑗 ≤ (𝑗 − 1)))
241240rspcev 3552 . . . . . . . . . . . . . . . . 17 (((𝑗 − 1) ∈ (𝐽𝑡) ∧ ¬ 𝑗 ≤ (𝑗 − 1)) → ∃𝑘 ∈ (𝐽𝑡) ¬ 𝑗𝑘)
242227, 238, 241syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → ∃𝑘 ∈ (𝐽𝑡) ¬ 𝑗𝑘)
243 rexnal 3165 . . . . . . . . . . . . . . . 16 (∃𝑘 ∈ (𝐽𝑡) ¬ 𝑗𝑘 ↔ ¬ ∀𝑘 ∈ (𝐽𝑡)𝑗𝑘)
244242, 243sylib 217 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → ¬ ∀𝑘 ∈ (𝐽𝑡)𝑗𝑘)
2452443expia 1119 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → (𝑡 ∈ (𝐷‘(𝑗 − 1)) → ¬ ∀𝑘 ∈ (𝐽𝑡)𝑗𝑘))
246245con2d 134 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → (∀𝑘 ∈ (𝐽𝑡)𝑗𝑘 → ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1))))
247246imp 406 . . . . . . . . . . . 12 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ ∀𝑘 ∈ (𝐽𝑡)𝑗𝑘) → ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))
248110, 247eldifd 3894 . . . . . . . . . . 11 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ ∀𝑘 ∈ (𝐽𝑡)𝑗𝑘) → 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))
249248exp31 419 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝑗 ∈ (𝐽𝑡) → (∀𝑘 ∈ (𝐽𝑡)𝑗𝑘𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))))
250104, 249reximdai 3239 . . . . . . . . 9 ((𝜑𝑡𝑇) → (∃𝑗 ∈ (𝐽𝑡)∀𝑘 ∈ (𝐽𝑡)𝑗𝑘 → ∃𝑗 ∈ (𝐽𝑡)𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1)))))
251101, 250mpd 15 . . . . . . . 8 ((𝜑𝑡𝑇) → ∃𝑗 ∈ (𝐽𝑡)𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))
252 df-rex 3069 . . . . . . . 8 (∃𝑗 ∈ (𝐽𝑡)𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))) ↔ ∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1)))))
253251, 252sylib 217 . . . . . . 7 ((𝜑𝑡𝑇) → ∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1)))))
254 simprl 767 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝑗 ∈ (𝐽𝑡))
255 eldifn 4058 . . . . . . . . . . . . 13 (𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))) → ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))
256 simplr 765 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → 𝑡𝑇)
257 simpll 763 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → 𝜑)
258175adantrr 713 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → 𝑗 ∈ (1...𝑁))
259 simprr 769 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))
260 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = 𝑘 → (𝑗 − (1 / 3)) = (𝑘 − (1 / 3)))
261260oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 𝑘 → ((𝑗 − (1 / 3)) · 𝐸) = ((𝑘 − (1 / 3)) · 𝐸))
262261breq2d 5082 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = 𝑘 → ((𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ ((𝑘 − (1 / 3)) · 𝐸)))
263262rabbidv 3404 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑘 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑘 − (1 / 3)) · 𝐸)})
264263cbvmptv 5183 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) = (𝑘 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑘 − (1 / 3)) · 𝐸)})
26557, 264eqtri 2766 . . . . . . . . . . . . . . . . . . . . 21 𝐷 = (𝑘 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑘 − (1 / 3)) · 𝐸)})
266 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = (𝑗 − 1) → (𝑘 − (1 / 3)) = ((𝑗 − 1) − (1 / 3)))
267266oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (𝑗 − 1) → ((𝑘 − (1 / 3)) · 𝐸) = (((𝑗 − 1) − (1 / 3)) · 𝐸))
268267breq2d 5082 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑗 − 1) → ((𝐹𝑡) ≤ ((𝑘 − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)))
269268rabbidv 3404 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = (𝑗 − 1) → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑘 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)})
270 fzssp1 13228 . . . . . . . . . . . . . . . . . . . . . . . 24 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
271186oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (0...((𝑁 − 1) + 1)) = (0...𝑁))
272270, 271sseqtrid 3969 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (0...(𝑁 − 1)) ⊆ (0...𝑁))
273272adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
274 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
275 1zzd 12281 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (1...𝑁)) → 1 ∈ ℤ)
276195adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℤ)
277228adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℤ)
278 fzsubel 13221 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑗 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1))))
279275, 276, 277, 275, 278syl22anc 835 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1))))
280274, 279mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1)))
281115a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (1...𝑁)) → (1 − 1) = 0)
282281oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (1...𝑁)) → ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1)))
283280, 282eleqtrd 2841 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ (0...(𝑁 − 1)))
284273, 283sseldd 3918 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ (0...𝑁))
28567adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑇 ∈ V)
286 rabexg 5250 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 ∈ V → {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)} ∈ V)
287285, 286syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (1...𝑁)) → {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)} ∈ V)
288265, 269, 284, 287fvmptd3 6880 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐷‘(𝑗 − 1)) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)})
289288eleq2d 2824 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑡 ∈ (𝐷‘(𝑗 − 1)) ↔ 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)}))
290289notbid 317 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (1...𝑁)) → (¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)) ↔ ¬ 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)}))
291290biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → ¬ 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)})
292257, 258, 259, 291syl21anc 834 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → ¬ 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)})
293 rabid 3304 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)} ↔ (𝑡𝑇 ∧ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)))
294230adantrr 713 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → 𝑗 ∈ ℝ)
295 recn 10892 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℝ → 𝑗 ∈ ℂ)
296 1cnd 10901 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℝ → 1 ∈ ℂ)
297 1re 10906 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ∈ ℝ
298297, 22, 233pm3.2i 1337 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0)
299 redivcl 11624 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → (1 / 3) ∈ ℝ)
300 recn 10892 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 / 3) ∈ ℝ → (1 / 3) ∈ ℂ)
301298, 299, 300mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 / 3) ∈ ℂ
302301a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℝ → (1 / 3) ∈ ℂ)
303295, 296, 302subsub4d 11293 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℝ → ((𝑗 − 1) − (1 / 3)) = (𝑗 − (1 + (1 / 3))))
304 3cn 11984 . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 ∈ ℂ
305304, 203, 304, 23divdiri 11662 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((3 + 1) / 3) = ((3 / 3) + (1 / 3))
306 3p1e4 12048 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (3 + 1) = 4
307306oveq1i 7265 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((3 + 1) / 3) = (4 / 3)
308304, 23dividi 11638 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (3 / 3) = 1
309308oveq1i 7265 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((3 / 3) + (1 / 3)) = (1 + (1 / 3))
310305, 307, 3093eqtr3i 2774 . . . . . . . . . . . . . . . . . . . . . . . 24 (4 / 3) = (1 + (1 / 3))
311310a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℝ → (4 / 3) = (1 + (1 / 3)))
312311oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℝ → (𝑗 − (4 / 3)) = (𝑗 − (1 + (1 / 3))))
313303, 312eqtr4d 2781 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℝ → ((𝑗 − 1) − (1 / 3)) = (𝑗 − (4 / 3)))
314313oveq1d 7270 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℝ → (((𝑗 − 1) − (1 / 3)) · 𝐸) = ((𝑗 − (4 / 3)) · 𝐸))
315294, 314syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → (((𝑗 − 1) − (1 / 3)) · 𝐸) = ((𝑗 − (4 / 3)) · 𝐸))
316315breq2d 5082 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → ((𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸)))
317316anbi2d 628 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → ((𝑡𝑇 ∧ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)) ↔ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸))))
318293, 317syl5bb 282 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → (𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)} ↔ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸))))
319292, 318mtbid 323 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → ¬ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸)))
320 imnan 399 . . . . . . . . . . . . . . 15 ((𝑡𝑇 → ¬ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸)) ↔ ¬ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸)))
321319, 320sylibr 233 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → (𝑡𝑇 → ¬ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸)))
322256, 321mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → ¬ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸))
323255, 322sylanr2 679 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → ¬ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸))
324230adantrr 713 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝑗 ∈ ℝ)
325 4re 11987 . . . . . . . . . . . . . . . . 17 4 ∈ ℝ
326325a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 4 ∈ ℝ)
32722a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 3 ∈ ℝ)
32823a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 3 ≠ 0)
329326, 327, 328redivcld 11733 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (4 / 3) ∈ ℝ)
330324, 329resubcld 11333 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (𝑗 − (4 / 3)) ∈ ℝ)
33137ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝐸 ∈ ℝ)
332 remulcl 10887 . . . . . . . . . . . . . . 15 (((𝑗 − (4 / 3)) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ)
333332rexrd 10956 . . . . . . . . . . . . . 14 (((𝑗 − (4 / 3)) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ*)
334330, 331, 333syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → ((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ*)
33546rexrd 10956 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ*)
336335adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (𝐹𝑡) ∈ ℝ*)
337 xrltnle 10973 . . . . . . . . . . . . 13 ((((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ* ∧ (𝐹𝑡) ∈ ℝ*) → (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ↔ ¬ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸)))
338334, 336, 337syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ↔ ¬ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸)))
339323, 338mpbird 256 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡))
340 simpl 482 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (𝜑𝑡𝑇))
341 simprr 769 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))
342341eldifad 3895 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝑡 ∈ (𝐷𝑗))
343 simplll 771 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝜑)
344175adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑗 ∈ (1...𝑁))
345 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑡 ∈ (𝐷𝑗))
346 oveq1 7262 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑗 → (𝑘 − (1 / 3)) = (𝑗 − (1 / 3)))
347346oveq1d 7270 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑗 → ((𝑘 − (1 / 3)) · 𝐸) = ((𝑗 − (1 / 3)) · 𝐸))
348347breq2d 5082 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → ((𝐹𝑡) ≤ ((𝑘 − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)))
349348rabbidv 3404 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑘 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
350 fz1ssfz0 13281 . . . . . . . . . . . . . . . . . . . 20 (1...𝑁) ⊆ (0...𝑁)
351350sseli 3913 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑁) → 𝑗 ∈ (0...𝑁))
352351adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (0...𝑁))
353 rabexg 5250 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ V → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ V)
354285, 353syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (1...𝑁)) → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ V)
355265, 349, 352, 354fvmptd3 6880 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐷𝑗) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
356355eleq2d 2824 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑡 ∈ (𝐷𝑗) ↔ 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}))
357356biimpa 476 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
358343, 344, 345, 357syl21anc 834 . . . . . . . . . . . . . 14 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
359 rabid 3304 . . . . . . . . . . . . . 14 (𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ↔ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)))
360358, 359sylib 217 . . . . . . . . . . . . 13 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑡 ∈ (𝐷𝑗)) → (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)))
361360simprd 495 . . . . . . . . . . . 12 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑡 ∈ (𝐷𝑗)) → (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))
362340, 254, 342, 361syl21anc 834 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))
363339, 362jca 511 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)))
36415ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝑁 ∈ ℕ)
365 simplr 765 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝑡𝑇)
366175adantrr 713 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝑗 ∈ (1...𝑁))
367 nfv 1918 . . . . . . . . . . . . . . . 16 𝑗 𝑖 ∈ (0...𝑁)
368102, 367nfan 1903 . . . . . . . . . . . . . . 15 𝑗(𝜑𝑖 ∈ (0...𝑁))
369 nfv 1918 . . . . . . . . . . . . . . 15 𝑗(𝑋𝑖):𝑇⟶ℝ
370368, 369nfim 1900 . . . . . . . . . . . . . 14 𝑗((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
371 eleq1w 2821 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑖 → (𝑗 ∈ (0...𝑁) ↔ 𝑖 ∈ (0...𝑁)))
372371anbi2d 628 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → ((𝜑𝑗 ∈ (0...𝑁)) ↔ (𝜑𝑖 ∈ (0...𝑁))))
373 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑖 → (𝑋𝑗) = (𝑋𝑖))
374373feq1d 6569 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → ((𝑋𝑗):𝑇⟶ℝ ↔ (𝑋𝑖):𝑇⟶ℝ))
375372, 374imbi12d 344 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (((𝜑𝑗 ∈ (0...𝑁)) → (𝑋𝑗):𝑇⟶ℝ) ↔ ((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)))
376 stoweidlem34.14 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑋𝑗):𝑇⟶ℝ)
377370, 375, 376chvarfv 2236 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
378377ad4ant14 748 . . . . . . . . . . . 12 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
379 simplll 771 . . . . . . . . . . . . 13 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (0...𝑁)) → 𝜑)
380 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (0...𝑁)) → 𝑖 ∈ (0...𝑁))
381 simpllr 772 . . . . . . . . . . . . 13 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (0...𝑁)) → 𝑡𝑇)
382102, 367, 103nf3an 1905 . . . . . . . . . . . . . . 15 𝑗(𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇)
383 nfv 1918 . . . . . . . . . . . . . . 15 𝑗((𝑋𝑖)‘𝑡) ≤ 1
384382, 383nfim 1900 . . . . . . . . . . . . . 14 𝑗((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → ((𝑋𝑖)‘𝑡) ≤ 1)
3853713anbi2d 1439 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡𝑇) ↔ (𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇)))
386373fveq1d 6758 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑖 → ((𝑋𝑗)‘𝑡) = ((𝑋𝑖)‘𝑡))
387386breq1d 5080 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (((𝑋𝑗)‘𝑡) ≤ 1 ↔ ((𝑋𝑖)‘𝑡) ≤ 1))
388385, 387imbi12d 344 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡𝑇) → ((𝑋𝑗)‘𝑡) ≤ 1) ↔ ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → ((𝑋𝑖)‘𝑡) ≤ 1)))
389 stoweidlem34.16 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡𝑇) → ((𝑋𝑗)‘𝑡) ≤ 1)
390384, 388, 389chvarfv 2236 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → ((𝑋𝑖)‘𝑡) ≤ 1)
391379, 380, 381, 390syl3anc 1369 . . . . . . . . . . . 12 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ≤ 1)
392 simplll 771 . . . . . . . . . . . . 13 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝜑)
393 0zd 12261 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 0 ∈ ℤ)
394 elfzel2 13183 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑗...𝑁) → 𝑁 ∈ ℤ)
395394adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑁 ∈ ℤ)
396 elfzelz 13185 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑗...𝑁) → 𝑖 ∈ ℤ)
397396adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ ℤ)
398 0red 10909 . . . . . . . . . . . . . . . 16 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 0 ∈ ℝ)
399 elfzel1 13184 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (𝑗...𝑁) → 𝑗 ∈ ℤ)
400399zred 12355 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (𝑗...𝑁) → 𝑗 ∈ ℝ)
401400adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑗 ∈ ℝ)
402396zred 12355 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (𝑗...𝑁) → 𝑖 ∈ ℝ)
403402adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ ℝ)
404 0red 10909 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 0 ∈ ℝ)
405 1red 10907 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 1 ∈ ℝ)
406 0le1 11428 . . . . . . . . . . . . . . . . . . 19 0 ≤ 1
407406a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 0 ≤ 1)
408 elfzle1 13188 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑁) → 1 ≤ 𝑗)
409175, 408syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 1 ≤ 𝑗)
410404, 405, 230, 407, 409letrd 11062 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 0 ≤ 𝑗)
411410adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 0 ≤ 𝑗)
412 elfzle1 13188 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (𝑗...𝑁) → 𝑗𝑖)
413412adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑗𝑖)
414398, 401, 403, 411, 413letrd 11062 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 0 ≤ 𝑖)
415 elfzle2 13189 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑗...𝑁) → 𝑖𝑁)
416415adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖𝑁)
417393, 395, 397, 414, 416elfzd 13176 . . . . . . . . . . . . . 14 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ (0...𝑁))
418417adantlrr 717 . . . . . . . . . . . . 13 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ (0...𝑁))
419 simpll 763 . . . . . . . . . . . . . 14 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝜑𝑡𝑇))
420 simplrl 773 . . . . . . . . . . . . . 14 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑗 ∈ (𝐽𝑡))
421 simplrr 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))
422421eldifad 3895 . . . . . . . . . . . . . 14 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑡 ∈ (𝐷𝑗))
423 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ (𝑗...𝑁))
424 simpl1 1189 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝜑𝑡𝑇))
425424simprd 495 . . . . . . . . . . . . . . . 16 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑡𝑇)
426424, 46syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝐹𝑡) ∈ ℝ)
427400adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑗 ∈ ℝ)
42824a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (1 / 3) ∈ ℝ)
429427, 428resubcld 11333 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝑗 − (1 / 3)) ∈ ℝ)
430 simpl1l 1222 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝜑)
431430, 37syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝐸 ∈ ℝ)
432429, 431remulcld 10936 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → ((𝑗 − (1 / 3)) · 𝐸) ∈ ℝ)
433402adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ ℝ)
43424a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (1 / 3) ∈ ℝ)
435433, 434resubcld 11333 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝑖 − (1 / 3)) ∈ ℝ)
43637adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝐸 ∈ ℝ)
437435, 436remulcld 10936 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (𝑗...𝑁)) → ((𝑖 − (1 / 3)) · 𝐸) ∈ ℝ)
438430, 437sylancom 587 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → ((𝑖 − (1 / 3)) · 𝐸) ∈ ℝ)
439 simpl3 1191 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑡 ∈ (𝐷𝑗))
440 simpl2 1190 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑗 ∈ (𝐽𝑡))
441424, 440, 175syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑗 ∈ (1...𝑁))
442430, 441, 355syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝐷𝑗) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
443439, 442eleqtrd 2841 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
444443, 359sylib 217 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)))
445444simprd 495 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))
446402adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ ℝ)
447412adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑗𝑖)
448427, 446, 428, 447lesub1dd 11521 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝑗 − (1 / 3)) ≤ (𝑖 − (1 / 3)))
449430, 435sylancom 587 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝑖 − (1 / 3)) ∈ ℝ)
45036rpregt0d 12707 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
451430, 450syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
452 lemul1 11757 . . . . . . . . . . . . . . . . . . 19 (((𝑗 − (1 / 3)) ∈ ℝ ∧ (𝑖 − (1 / 3)) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → ((𝑗 − (1 / 3)) ≤ (𝑖 − (1 / 3)) ↔ ((𝑗 − (1 / 3)) · 𝐸) ≤ ((𝑖 − (1 / 3)) · 𝐸)))
453429, 449, 451, 452syl3anc 1369 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → ((𝑗 − (1 / 3)) ≤ (𝑖 − (1 / 3)) ↔ ((𝑗 − (1 / 3)) · 𝐸) ≤ ((𝑖 − (1 / 3)) · 𝐸)))
454448, 453mpbid 231 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → ((𝑗 − (1 / 3)) · 𝐸) ≤ ((𝑖 − (1 / 3)) · 𝐸))
455426, 432, 438, 445, 454letrd 11062 . . . . . . . . . . . . . . . 16 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸))
456 rabid 3304 . . . . . . . . . . . . . . . 16 (𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)} ↔ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)))
457425, 455, 456sylanbrc 582 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)})
458 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ (𝑗...𝑁))
459 0zd 12261 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑖 ∈ (𝑗...𝑁)) → 0 ∈ ℤ)
4603943ad2ant3 1133 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑁 ∈ ℤ)
4613963ad2ant3 1133 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ ℤ)
462459, 460, 4613jca 1126 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑖 ∈ (𝑗...𝑁)) → (0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ))
463414, 416jca 511 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (0 ≤ 𝑖𝑖𝑁))
4644633impa 1108 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑖 ∈ (𝑗...𝑁)) → (0 ≤ 𝑖𝑖𝑁))
465 elfz2 13175 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0...𝑁) ↔ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (0 ≤ 𝑖𝑖𝑁)))
466462, 464, 465sylanbrc 582 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ (0...𝑁))
467424, 440, 458, 466syl3anc 1369 . . . . . . . . . . . . . . . 16 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ (0...𝑁))
468 oveq1 7262 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (𝑗 − (1 / 3)) = (𝑖 − (1 / 3)))
469468oveq1d 7270 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → ((𝑗 − (1 / 3)) · 𝐸) = ((𝑖 − (1 / 3)) · 𝐸))
470469breq2d 5082 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → ((𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)))
471470rabbidv 3404 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑖 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)})
472 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0...𝑁)) → 𝑖 ∈ (0...𝑁))
473 rabexg 5250 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ V → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)} ∈ V)
47467, 473syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)} ∈ V)
475474adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0...𝑁)) → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)} ∈ V)
47657, 471, 472, 475fvmptd3 6880 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑁)) → (𝐷𝑖) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)})
477430, 467, 476syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝐷𝑖) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)})
478457, 477eleqtrrd 2842 . . . . . . . . . . . . . 14 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑡 ∈ (𝐷𝑖))
479419, 420, 422, 423, 478syl31anc 1371 . . . . . . . . . . . . 13 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑡 ∈ (𝐷𝑖))
480102, 367, 221nf3an 1905 . . . . . . . . . . . . . . 15 𝑗(𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑖))
481 nfv 1918 . . . . . . . . . . . . . . 15 𝑗((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁)
482480, 481nfim 1900 . . . . . . . . . . . . . 14 𝑗((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑖)) → ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁))
483371, 2233anbi23d 1437 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑗)) ↔ (𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑖))))
484386breq1d 5080 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (((𝑋𝑗)‘𝑡) < (𝐸 / 𝑁) ↔ ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁)))
485483, 484imbi12d 344 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑗)) → ((𝑋𝑗)‘𝑡) < (𝐸 / 𝑁)) ↔ ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑖)) → ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁))))
486 stoweidlem34.17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑗)) → ((𝑋𝑗)‘𝑡) < (𝐸 / 𝑁))
487482, 485, 486chvarfv 2236 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑖)) → ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁))
488392, 418, 479, 487syl3anc 1369 . . . . . . . . . . . 12 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁))
48936ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝐸 ∈ ℝ+)
490 stoweidlem34.13 . . . . . . . . . . . . 13 (𝜑𝐸 < (1 / 3))
491490ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝐸 < (1 / 3))
492364, 365, 366, 378, 391, 488, 489, 491stoweidlem11 43442 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸))
493 eleq1w 2821 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑗 → (𝑙 ∈ (𝐽𝑡) ↔ 𝑗 ∈ (𝐽𝑡)))
494 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑗 → (𝐷𝑙) = (𝐷𝑗))
495 oveq1 7262 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑗 → (𝑙 − 1) = (𝑗 − 1))
496495fveq2d 6760 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑗 → (𝐷‘(𝑙 − 1)) = (𝐷‘(𝑗 − 1)))
497494, 496difeq12d 4054 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑗 → ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))) = ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))
498497eleq2d 2824 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑗 → (𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))) ↔ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1)))))
499493, 498anbi12d 630 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑗 → ((𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))) ↔ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))))
500499anbi2d 628 . . . . . . . . . . . . . . 15 (𝑙 = 𝑗 → (((𝜑𝑡𝑇) ∧ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) ↔ ((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1)))))))
501 oveq1 7262 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑗 → (𝑙 − (4 / 3)) = (𝑗 − (4 / 3)))
502501oveq1d 7270 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑗 → ((𝑙 − (4 / 3)) · 𝐸) = ((𝑗 − (4 / 3)) · 𝐸))
503502breq1d 5080 . . . . . . . . . . . . . . 15 (𝑙 = 𝑗 → (((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) ↔ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))
504500, 503imbi12d 344 . . . . . . . . . . . . . 14 (𝑙 = 𝑗 → ((((𝜑𝑡𝑇) ∧ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → ((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)) ↔ (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))))
505 eleq1w 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑡 → (𝑠𝑇𝑡𝑇))
506505anbi2d 628 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑡 → ((𝜑𝑠𝑇) ↔ (𝜑𝑡𝑇)))
507 fveq2 6756 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝑡 → (𝐽𝑠) = (𝐽𝑡))
508507eleq2d 2824 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑡 → (𝑙 ∈ (𝐽𝑠) ↔ 𝑙 ∈ (𝐽𝑡)))
509 eleq1w 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑡 → (𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))) ↔ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))))
510508, 509anbi12d 630 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑡 → ((𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))) ↔ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))))
511506, 510anbi12d 630 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑡 → (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) ↔ ((𝜑𝑡𝑇) ∧ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))))))
512 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑡 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑠) = ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))
513512breq2d 5082 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑡 → (((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑠) ↔ ((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))
514511, 513imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑡 → ((((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → ((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑠)) ↔ (((𝜑𝑡𝑇) ∧ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → ((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))))
515 stoweidlem34.1 . . . . . . . . . . . . . . . . . 18 𝑡𝐹
516 nfv 1918 . . . . . . . . . . . . . . . . . . . 20 𝑗 𝑠𝑇
517102, 516nfan 1903 . . . . . . . . . . . . . . . . . . 19 𝑗(𝜑𝑠𝑇)
518 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . 22 𝑗𝑠
51991, 518nffv 6766 . . . . . . . . . . . . . . . . . . . . 21 𝑗(𝐽𝑠)
520519nfcri 2893 . . . . . . . . . . . . . . . . . . . 20 𝑗 𝑙 ∈ (𝐽𝑠)
521 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗𝑙
52276, 521nffv 6766 . . . . . . . . . . . . . . . . . . . . . 22 𝑗(𝐷𝑙)
523 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗(𝑙 − 1)
52476, 523nffv 6766 . . . . . . . . . . . . . . . . . . . . . 22 𝑗(𝐷‘(𝑙 − 1))
525522, 524nfdif 4056 . . . . . . . . . . . . . . . . . . . . 21 𝑗((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))
526525nfcri 2893 . . . . . . . . . . . . . . . . . . . 20 𝑗 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))
527520, 526nfan 1903 . . . . . . . . . . . . . . . . . . 19 𝑗(𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))
528517, 527nfan 1903 . . . . . . . . . . . . . . . . . 18 𝑗((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))))
529 nfv 1918 . . . . . . . . . . . . . . . . . . . 20 𝑡 𝑠𝑇
5301, 529nfan 1903 . . . . . . . . . . . . . . . . . . 19 𝑡(𝜑𝑠𝑇)
531 nfmpt1 5178 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡(𝑡𝑇 ↦ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
5325, 531nfcxfr 2904 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝐽
533 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑠
534532, 533nffv 6766 . . . . . . . . . . . . . . . . . . . . 21 𝑡(𝐽𝑠)
535534nfcri 2893 . . . . . . . . . . . . . . . . . . . 20 𝑡 𝑙 ∈ (𝐽𝑠)
536 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡𝑙
537162, 536nffv 6766 . . . . . . . . . . . . . . . . . . . . . 22 𝑡(𝐷𝑙)
538 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡(𝑙 − 1)
539162, 538nffv 6766 . . . . . . . . . . . . . . . . . . . . . 22 𝑡(𝐷‘(𝑙 − 1))
540537, 539nfdif 4056 . . . . . . . . . . . . . . . . . . . . 21 𝑡((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))
541540nfcri 2893 . . . . . . . . . . . . . . . . . . . 20 𝑡 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))
542535, 541nfan 1903 . . . . . . . . . . . . . . . . . . 19 𝑡(𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))
543530, 542nfan 1903 . . . . . . . . . . . . . . . . . 18 𝑡((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))))
544 stoweidlem34.5 . . . . . . . . . . . . . . . . . 18 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
54515ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → 𝑁 ∈ ℕ)
54667ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → 𝑇 ∈ V)
5473rabex 5251 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)} ∈ V
548 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑡𝑗
549162, 548nffv 6766 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑡(𝐷𝑗)
550549nfcri 2893 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑡 𝑠 ∈ (𝐷𝑗)
551 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑡(1...𝑁)
552550, 551nfrabw 3311 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑡{𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)}
553 eleq1w 2821 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (𝑡 ∈ (𝐷𝑗) ↔ 𝑠 ∈ (𝐷𝑗)))
554553rabbidv 3404 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑠 → {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)} = {𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)})
555533, 552, 554, 5fvmptf 6878 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠𝑇 ∧ {𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)} ∈ V) → (𝐽𝑠) = {𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)})
556547, 555mpan2 687 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠𝑇 → (𝐽𝑠) = {𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)})
557556eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠𝑇 → (𝑙 ∈ (𝐽𝑠) ↔ 𝑙 ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)}))
558557biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠𝑇𝑙 ∈ (𝐽𝑠)) → 𝑙 ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)})
559522nfcri 2893 . . . . . . . . . . . . . . . . . . . . . 22 𝑗 𝑠 ∈ (𝐷𝑙)
560 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑙 → (𝐷𝑗) = (𝐷𝑙))
561560eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑙 → (𝑠 ∈ (𝐷𝑗) ↔ 𝑠 ∈ (𝐷𝑙)))
562521, 74, 559, 561elrabf 3613 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)} ↔ (𝑙 ∈ (1...𝑁) ∧ 𝑠 ∈ (𝐷𝑙)))
563558, 562sylib 217 . . . . . . . . . . . . . . . . . . . 20 ((𝑠𝑇𝑙 ∈ (𝐽𝑠)) → (𝑙 ∈ (1...𝑁) ∧ 𝑠 ∈ (𝐷𝑙)))
564563simpld 494 . . . . . . . . . . . . . . . . . . 19 ((𝑠𝑇𝑙 ∈ (𝐽𝑠)) → 𝑙 ∈ (1...𝑁))
565564ad2ant2lr 744 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → 𝑙 ∈ (1...𝑁))
566 simprr 769 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))
56745ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → 𝐹:𝑇⟶ℝ)
56836ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → 𝐸 ∈ ℝ+)
569490ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → 𝐸 < (1 / 3))
570377ad4ant14 748 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) ∧ 𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
571 simp1ll 1234 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) ∧ 𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → 𝜑)
572 nfv 1918 . . . . . . . . . . . . . . . . . . . . 21 𝑗0 ≤ ((𝑋𝑖)‘𝑡)
573382, 572nfim 1900 . . . . . . . . . . . . . . . . . . . 20 𝑗((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑖)‘𝑡))
574386breq2d 5082 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → (0 ≤ ((𝑋𝑗)‘𝑡) ↔ 0 ≤ ((𝑋𝑖)‘𝑡)))
575385, 574imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑗)‘𝑡)) ↔ ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑖)‘𝑡))))
576 stoweidlem34.15 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑗)‘𝑡))
577573, 575, 576chvarfv 2236 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑖)‘𝑡))
578571, 577syld3an1 1408 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) ∧ 𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑖)‘𝑡))
579 simp1ll 1234 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) ∧ 𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) → 𝜑)
580 nfmpt1 5178 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑗(𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
581544, 580nfcxfr 2904 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑗𝐵
582581, 219nffv 6766 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗(𝐵𝑖)
583582nfcri 2893 . . . . . . . . . . . . . . . . . . . . . 22 𝑗 𝑡 ∈ (𝐵𝑖)
584102, 367, 583nf3an 1905 . . . . . . . . . . . . . . . . . . . . 21 𝑗(𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖))
585 nfv 1918 . . . . . . . . . . . . . . . . . . . . 21 𝑗(1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡)
586584, 585nfim 1900 . . . . . . . . . . . . . . . . . . . 20 𝑗((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡))
587 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑖 → (𝐵𝑗) = (𝐵𝑖))
588587eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑖 → (𝑡 ∈ (𝐵𝑗) ↔ 𝑡 ∈ (𝐵𝑖)))
589371, 5883anbi23d 1437 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑗)) ↔ (𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖))))
590386breq2d 5082 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → ((1 − (𝐸 / 𝑁)) < ((𝑋𝑗)‘𝑡) ↔ (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡)))
591589, 590imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑗)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑗)‘𝑡)) ↔ ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡))))
592 stoweidlem34.18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑗)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑗)‘𝑡))
593586, 591, 592chvarfv 2236 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡))
594579, 593syld3an1 1408 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) ∧ 𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡))
595515, 528, 543, 57, 544, 545, 546, 565, 566, 567, 568, 569, 570, 578, 594stoweidlem26 43457 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → ((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑠))
596514, 595vtoclg 3495 . . . . . . . . . . . . . . . 16 (𝑡𝑇 → (((𝜑𝑡𝑇) ∧ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → ((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))
597596ad2antlr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → (((𝜑𝑡𝑇) ∧ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → ((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))
598597pm2.43i 52 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → ((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))
599504, 598vtoclg 3495 . . . . . . . . . . . . 13 (𝑗 ∈ (𝐽𝑡) → (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))
600599ad2antrl 724 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))
601600pm2.43i 52 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))
602492, 601jca 511 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))
603254, 363, 6023jca 1126 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (𝑗 ∈ (𝐽𝑡) ∧ (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))))
604603ex 412 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1)))) → (𝑗 ∈ (𝐽𝑡) ∧ (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))))
605104, 604eximd 2212 . . . . . . 7 ((𝜑𝑡𝑇) → (∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1)))) → ∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))))
606253, 605mpd 15 . . . . . 6 ((𝜑𝑡𝑇) → ∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))))
607 3anass 1093 . . . . . . 7 ((𝑗 ∈ (𝐽𝑡) ∧ (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))) ↔ (𝑗 ∈ (𝐽𝑡) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))))
608607exbii 1851 . . . . . 6 (∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))) ↔ ∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))))
609606, 608sylib 217 . . . . 5 ((𝜑𝑡𝑇) → ∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))))
610 df-rex 3069 . . . . 5 (∃𝑗 ∈ (𝐽𝑡)((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))) ↔ ∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))))
611609, 610sylibr 233 . . . 4 ((𝜑𝑡𝑇) → ∃𝑗 ∈ (𝐽𝑡)((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))))
612 nfcv 2906 . . . . 5 𝑗
61393, 612ssrexf 3981 . . . 4 ((𝐽𝑡) ⊆ ℝ → (∃𝑗 ∈ (𝐽𝑡)((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))) → ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))))
61414, 611, 613sylc 65 . . 3 ((𝜑𝑡𝑇) → ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))))
615614ex 412 . 2 (𝜑 → (𝑡𝑇 → ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))))
6161, 615ralrimi 3139 1 (𝜑 → ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085  wal 1537   = wceq 1539  wex 1783  wnf 1787  wcel 2108  wnfc 2886  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  wss 3883  c0 4253   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  3c3 11959  4c4 11960  0cn0 12163  cz 12249  cuz 12511  +crp 12659  ...cfz 13168  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by:  stoweidlem60  43491
  Copyright terms: Public domain W3C validator