Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem34 Structured version   Visualization version   GIF version

Theorem stoweidlem34 43575
Description: This lemma proves that for all 𝑡 in 𝑇 there is a 𝑗 as in the proof of [BrosowskiDeutsh] p. 91 (at the bottom of page 91 and at the top of page 92): (j-4/3) * ε < f(t) <= (j-1/3) * ε , g(t) < (j+1/3) * ε, and g(t) > (j-4/3) * ε. Here 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem34.1 𝑡𝐹
stoweidlem34.2 𝑗𝜑
stoweidlem34.3 𝑡𝜑
stoweidlem34.4 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
stoweidlem34.5 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
stoweidlem34.6 𝐽 = (𝑡𝑇 ↦ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
stoweidlem34.7 (𝜑𝑁 ∈ ℕ)
stoweidlem34.8 (𝜑𝑇 ∈ V)
stoweidlem34.9 (𝜑𝐹:𝑇⟶ℝ)
stoweidlem34.10 ((𝜑𝑡𝑇) → 0 ≤ (𝐹𝑡))
stoweidlem34.11 ((𝜑𝑡𝑇) → (𝐹𝑡) < ((𝑁 − 1) · 𝐸))
stoweidlem34.12 (𝜑𝐸 ∈ ℝ+)
stoweidlem34.13 (𝜑𝐸 < (1 / 3))
stoweidlem34.14 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑋𝑗):𝑇⟶ℝ)
stoweidlem34.15 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑗)‘𝑡))
stoweidlem34.16 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡𝑇) → ((𝑋𝑗)‘𝑡) ≤ 1)
stoweidlem34.17 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑗)) → ((𝑋𝑗)‘𝑡) < (𝐸 / 𝑁))
stoweidlem34.18 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑗)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑗)‘𝑡))
Assertion
Ref Expression
stoweidlem34 (𝜑 → ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))))
Distinct variable groups:   𝑖,𝑗,𝑡,𝐸   𝐷,𝑖   𝑖,𝐽   𝑖,𝑁,𝑗,𝑡   𝑇,𝑖,𝑗,𝑡   𝜑,𝑖   𝑗,𝐹   𝑗,𝑋,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑗)   𝐵(𝑡,𝑖,𝑗)   𝐷(𝑡,𝑗)   𝐹(𝑡,𝑖)   𝐽(𝑡,𝑗)   𝑋(𝑖)

Proof of Theorem stoweidlem34
Dummy variables 𝑘 𝑙 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem34.3 . 2 𝑡𝜑
2 simpr 485 . . . . . . . 8 ((𝜑𝑡𝑇) → 𝑡𝑇)
3 ovex 7308 . . . . . . . . 9 (1...𝑁) ∈ V
43rabex 5256 . . . . . . . 8 {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)} ∈ V
5 stoweidlem34.6 . . . . . . . . 9 𝐽 = (𝑡𝑇 ↦ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
65fvmpt2 6886 . . . . . . . 8 ((𝑡𝑇 ∧ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)} ∈ V) → (𝐽𝑡) = {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
72, 4, 6sylancl 586 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐽𝑡) = {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
8 ssrab2 4013 . . . . . . 7 {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)} ⊆ (1...𝑁)
97, 8eqsstrdi 3975 . . . . . 6 ((𝜑𝑡𝑇) → (𝐽𝑡) ⊆ (1...𝑁))
10 elfznn 13285 . . . . . . 7 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
1110ssriv 3925 . . . . . 6 (1...𝑁) ⊆ ℕ
129, 11sstrdi 3933 . . . . 5 ((𝜑𝑡𝑇) → (𝐽𝑡) ⊆ ℕ)
13 nnssre 11977 . . . . 5 ℕ ⊆ ℝ
1412, 13sstrdi 3933 . . . 4 ((𝜑𝑡𝑇) → (𝐽𝑡) ⊆ ℝ)
15 stoweidlem34.7 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ)
1615adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑡𝑇) → 𝑁 ∈ ℕ)
17 nnuz 12621 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
1816, 17eleqtrdi 2849 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → 𝑁 ∈ (ℤ‘1))
19 eluzfz2 13264 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
2018, 19syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → 𝑁 ∈ (1...𝑁))
21 stoweidlem34.11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → (𝐹𝑡) < ((𝑁 − 1) · 𝐸))
22 3re 12053 . . . . . . . . . . . . . . . . . . . . 21 3 ∈ ℝ
23 3ne0 12079 . . . . . . . . . . . . . . . . . . . . 21 3 ≠ 0
2422, 23rereccli 11740 . . . . . . . . . . . . . . . . . . . 20 (1 / 3) ∈ ℝ
2524a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝑇) → (1 / 3) ∈ ℝ)
26 1red 10976 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
2716nnred 11988 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝑇) → 𝑁 ∈ ℝ)
28 1lt3 12146 . . . . . . . . . . . . . . . . . . . . 21 1 < 3
2922, 28pm3.2i 471 . . . . . . . . . . . . . . . . . . . 20 (3 ∈ ℝ ∧ 1 < 3)
30 recgt1i 11872 . . . . . . . . . . . . . . . . . . . . 21 ((3 ∈ ℝ ∧ 1 < 3) → (0 < (1 / 3) ∧ (1 / 3) < 1))
3130simprd 496 . . . . . . . . . . . . . . . . . . . 20 ((3 ∈ ℝ ∧ 1 < 3) → (1 / 3) < 1)
3229, 31mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝑇) → (1 / 3) < 1)
3325, 26, 27, 32ltsub2dd 11588 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡𝑇) → (𝑁 − 1) < (𝑁 − (1 / 3)))
3427, 26resubcld 11403 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝑇) → (𝑁 − 1) ∈ ℝ)
3527, 25resubcld 11403 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝑇) → (𝑁 − (1 / 3)) ∈ ℝ)
36 stoweidlem34.12 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸 ∈ ℝ+)
3736rpred 12772 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐸 ∈ ℝ)
3837adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝑇) → 𝐸 ∈ ℝ)
3936rpgt0d 12775 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 < 𝐸)
4039adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝑇) → 0 < 𝐸)
41 ltmul1 11825 . . . . . . . . . . . . . . . . . . 19 (((𝑁 − 1) ∈ ℝ ∧ (𝑁 − (1 / 3)) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → ((𝑁 − 1) < (𝑁 − (1 / 3)) ↔ ((𝑁 − 1) · 𝐸) < ((𝑁 − (1 / 3)) · 𝐸)))
4234, 35, 38, 40, 41syl112anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡𝑇) → ((𝑁 − 1) < (𝑁 − (1 / 3)) ↔ ((𝑁 − 1) · 𝐸) < ((𝑁 − (1 / 3)) · 𝐸)))
4333, 42mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → ((𝑁 − 1) · 𝐸) < ((𝑁 − (1 / 3)) · 𝐸))
4421, 43jca 512 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → ((𝐹𝑡) < ((𝑁 − 1) · 𝐸) ∧ ((𝑁 − 1) · 𝐸) < ((𝑁 − (1 / 3)) · 𝐸)))
45 stoweidlem34.9 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:𝑇⟶ℝ)
4645ffvelrnda 6961 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
4734, 38remulcld 11005 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → ((𝑁 − 1) · 𝐸) ∈ ℝ)
4835, 38remulcld 11005 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → ((𝑁 − (1 / 3)) · 𝐸) ∈ ℝ)
49 lttr 11051 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑡) ∈ ℝ ∧ ((𝑁 − 1) · 𝐸) ∈ ℝ ∧ ((𝑁 − (1 / 3)) · 𝐸) ∈ ℝ) → (((𝐹𝑡) < ((𝑁 − 1) · 𝐸) ∧ ((𝑁 − 1) · 𝐸) < ((𝑁 − (1 / 3)) · 𝐸)) → (𝐹𝑡) < ((𝑁 − (1 / 3)) · 𝐸)))
50 ltle 11063 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑡) ∈ ℝ ∧ ((𝑁 − (1 / 3)) · 𝐸) ∈ ℝ) → ((𝐹𝑡) < ((𝑁 − (1 / 3)) · 𝐸) → (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)))
51503adant2 1130 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑡) ∈ ℝ ∧ ((𝑁 − 1) · 𝐸) ∈ ℝ ∧ ((𝑁 − (1 / 3)) · 𝐸) ∈ ℝ) → ((𝐹𝑡) < ((𝑁 − (1 / 3)) · 𝐸) → (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)))
5249, 51syld 47 . . . . . . . . . . . . . . . . 17 (((𝐹𝑡) ∈ ℝ ∧ ((𝑁 − 1) · 𝐸) ∈ ℝ ∧ ((𝑁 − (1 / 3)) · 𝐸) ∈ ℝ) → (((𝐹𝑡) < ((𝑁 − 1) · 𝐸) ∧ ((𝑁 − 1) · 𝐸) < ((𝑁 − (1 / 3)) · 𝐸)) → (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)))
5346, 47, 48, 52syl3anc 1370 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → (((𝐹𝑡) < ((𝑁 − 1) · 𝐸) ∧ ((𝑁 − 1) · 𝐸) < ((𝑁 − (1 / 3)) · 𝐸)) → (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)))
5444, 53mpd 15 . . . . . . . . . . . . . . 15 ((𝜑𝑡𝑇) → (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸))
55 rabid 3310 . . . . . . . . . . . . . . 15 (𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)} ↔ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)))
562, 54, 55sylanbrc 583 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)})
57 stoweidlem34.4 . . . . . . . . . . . . . . . 16 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
58 oveq1 7282 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑁 → (𝑗 − (1 / 3)) = (𝑁 − (1 / 3)))
5958oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑁 → ((𝑗 − (1 / 3)) · 𝐸) = ((𝑁 − (1 / 3)) · 𝐸))
6059breq2d 5086 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑁 → ((𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)))
6160rabbidv 3414 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑁 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)})
62 nnnn0 12240 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
63 nn0uz 12620 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘0)
6462, 63eleqtrdi 2849 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘0))
65 eluzfz2 13264 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
6615, 64, 653syl 18 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ (0...𝑁))
67 stoweidlem34.8 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ∈ V)
68 rabexg 5255 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ V → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)} ∈ V)
6967, 68syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)} ∈ V)
7057, 61, 66, 69fvmptd3 6898 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝑁) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)})
7170adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → (𝐷𝑁) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑁 − (1 / 3)) · 𝐸)})
7256, 71eleqtrrd 2842 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝐷𝑁))
73 nfcv 2907 . . . . . . . . . . . . . 14 𝑗𝑁
74 nfcv 2907 . . . . . . . . . . . . . 14 𝑗(1...𝑁)
75 nfmpt1 5182 . . . . . . . . . . . . . . . . 17 𝑗(𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
7657, 75nfcxfr 2905 . . . . . . . . . . . . . . . 16 𝑗𝐷
7776, 73nffv 6784 . . . . . . . . . . . . . . 15 𝑗(𝐷𝑁)
7877nfcri 2894 . . . . . . . . . . . . . 14 𝑗 𝑡 ∈ (𝐷𝑁)
79 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑗 = 𝑁 → (𝐷𝑗) = (𝐷𝑁))
8079eleq2d 2824 . . . . . . . . . . . . . 14 (𝑗 = 𝑁 → (𝑡 ∈ (𝐷𝑗) ↔ 𝑡 ∈ (𝐷𝑁)))
8173, 74, 78, 80elrabf 3620 . . . . . . . . . . . . 13 (𝑁 ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)} ↔ (𝑁 ∈ (1...𝑁) ∧ 𝑡 ∈ (𝐷𝑁)))
8220, 72, 81sylanbrc 583 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → 𝑁 ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
8382, 7eleqtrrd 2842 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 𝑁 ∈ (𝐽𝑡))
84 ne0i 4268 . . . . . . . . . . 11 (𝑁 ∈ (𝐽𝑡) → (𝐽𝑡) ≠ ∅)
8583, 84syl 17 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝐽𝑡) ≠ ∅)
86 nnwo 12653 . . . . . . . . . . 11 (((𝐽𝑡) ⊆ ℕ ∧ (𝐽𝑡) ≠ ∅) → ∃𝑖 ∈ (𝐽𝑡)∀𝑘 ∈ (𝐽𝑡)𝑖𝑘)
87 nfcv 2907 . . . . . . . . . . . 12 𝑖(𝐽𝑡)
88 nfcv 2907 . . . . . . . . . . . . . . 15 𝑗𝑇
89 nfrab1 3317 . . . . . . . . . . . . . . 15 𝑗{𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)}
9088, 89nfmpt 5181 . . . . . . . . . . . . . 14 𝑗(𝑡𝑇 ↦ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
915, 90nfcxfr 2905 . . . . . . . . . . . . 13 𝑗𝐽
92 nfcv 2907 . . . . . . . . . . . . 13 𝑗𝑡
9391, 92nffv 6784 . . . . . . . . . . . 12 𝑗(𝐽𝑡)
94 nfv 1917 . . . . . . . . . . . . 13 𝑗 𝑖𝑘
9593, 94nfralw 3151 . . . . . . . . . . . 12 𝑗𝑘 ∈ (𝐽𝑡)𝑖𝑘
96 nfv 1917 . . . . . . . . . . . 12 𝑖𝑘 ∈ (𝐽𝑡)𝑗𝑘
97 breq1 5077 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑖𝑘𝑗𝑘))
9897ralbidv 3112 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (∀𝑘 ∈ (𝐽𝑡)𝑖𝑘 ↔ ∀𝑘 ∈ (𝐽𝑡)𝑗𝑘))
9987, 93, 95, 96, 98cbvrexfw 3370 . . . . . . . . . . 11 (∃𝑖 ∈ (𝐽𝑡)∀𝑘 ∈ (𝐽𝑡)𝑖𝑘 ↔ ∃𝑗 ∈ (𝐽𝑡)∀𝑘 ∈ (𝐽𝑡)𝑗𝑘)
10086, 99sylib 217 . . . . . . . . . 10 (((𝐽𝑡) ⊆ ℕ ∧ (𝐽𝑡) ≠ ∅) → ∃𝑗 ∈ (𝐽𝑡)∀𝑘 ∈ (𝐽𝑡)𝑗𝑘)
10112, 85, 100syl2anc 584 . . . . . . . . 9 ((𝜑𝑡𝑇) → ∃𝑗 ∈ (𝐽𝑡)∀𝑘 ∈ (𝐽𝑡)𝑗𝑘)
102 stoweidlem34.2 . . . . . . . . . . 11 𝑗𝜑
103 nfv 1917 . . . . . . . . . . 11 𝑗 𝑡𝑇
104102, 103nfan 1902 . . . . . . . . . 10 𝑗(𝜑𝑡𝑇)
1057eleq2d 2824 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → (𝑗 ∈ (𝐽𝑡) ↔ 𝑗 ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)}))
106105biimpa 477 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 𝑗 ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
107 rabid 3310 . . . . . . . . . . . . . . 15 (𝑗 ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)} ↔ (𝑗 ∈ (1...𝑁) ∧ 𝑡 ∈ (𝐷𝑗)))
108106, 107sylib 217 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → (𝑗 ∈ (1...𝑁) ∧ 𝑡 ∈ (𝐷𝑗)))
109108simprd 496 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 𝑡 ∈ (𝐷𝑗))
110109adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ ∀𝑘 ∈ (𝐽𝑡)𝑗𝑘) → 𝑡 ∈ (𝐷𝑗))
111 simp3 1137 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → 𝑡 ∈ (𝐷‘(𝑗 − 1)))
112 simp1l 1196 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → 𝜑)
113 noel 4264 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ¬ 𝑡 ∈ ∅
114 oveq1 7282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = 1 → (𝑗 − 1) = (1 − 1))
115 1m1e0 12045 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (1 − 1) = 0
116114, 115eqtrdi 2794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = 1 → (𝑗 − 1) = 0)
117116fveq2d 6778 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 = 1 → (𝐷‘(𝑗 − 1)) = (𝐷‘0))
11822a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑡𝑇) → 3 ∈ ℝ)
11923a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑡𝑇) → 3 ≠ 0)
12026, 118, 119redivcld 11803 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑡𝑇) → (1 / 3) ∈ ℝ)
121120renegcld 11402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑡𝑇) → -(1 / 3) ∈ ℝ)
122121, 38remulcld 11005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑡𝑇) → (-(1 / 3) · 𝐸) ∈ ℝ)
123 0red 10978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑡𝑇) → 0 ∈ ℝ)
124 3pos 12078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 0 < 3
12522, 124recgt0ii 11881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 0 < (1 / 3)
126 lt0neg2 11482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((1 / 3) ∈ ℝ → (0 < (1 / 3) ↔ -(1 / 3) < 0))
12724, 126ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (0 < (1 / 3) ↔ -(1 / 3) < 0)
128125, 127mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 -(1 / 3) < 0
129 ltmul1 11825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((-(1 / 3) ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (-(1 / 3) < 0 ↔ (-(1 / 3) · 𝐸) < (0 · 𝐸)))
130121, 123, 38, 40, 129syl112anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑡𝑇) → (-(1 / 3) < 0 ↔ (-(1 / 3) · 𝐸) < (0 · 𝐸)))
131128, 130mpbii 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑡𝑇) → (-(1 / 3) · 𝐸) < (0 · 𝐸))
132 mul02lem2 11152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐸 ∈ ℝ → (0 · 𝐸) = 0)
13338, 132syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑡𝑇) → (0 · 𝐸) = 0)
134131, 133breqtrd 5100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑡𝑇) → (-(1 / 3) · 𝐸) < 0)
135 stoweidlem34.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑡𝑇) → 0 ≤ (𝐹𝑡))
136122, 123, 46, 134, 135ltletrd 11135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑡𝑇) → (-(1 / 3) · 𝐸) < (𝐹𝑡))
137122, 46ltnled 11122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑡𝑇) → ((-(1 / 3) · 𝐸) < (𝐹𝑡) ↔ ¬ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)))
138136, 137mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑡𝑇) → ¬ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸))
139 nan 827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 → ¬ (𝑡𝑇 ∧ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸))) ↔ ((𝜑𝑡𝑇) → ¬ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)))
140138, 139mpbir 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ¬ (𝑡𝑇 ∧ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)))
141 rabid 3310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)} ↔ (𝑡𝑇 ∧ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)))
142140, 141sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → ¬ 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)})
143 oveq1 7282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 = 0 → (𝑗 − (1 / 3)) = (0 − (1 / 3)))
144 df-neg 11208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 -(1 / 3) = (0 − (1 / 3))
145143, 144eqtr4di 2796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑗 = 0 → (𝑗 − (1 / 3)) = -(1 / 3))
146145oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑗 = 0 → ((𝑗 − (1 / 3)) · 𝐸) = (-(1 / 3) · 𝐸))
147146breq2d 5086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑗 = 0 → ((𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)))
148147rabbidv 3414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = 0 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)})
14915nnnn0d 12293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝑁 ∈ ℕ0)
150 elnn0uz 12623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
151149, 150sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝑁 ∈ (ℤ‘0))
152 eluzfz1 13263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ (ℤ‘0) → 0 ∈ (0...𝑁))
153151, 152syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → 0 ∈ (0...𝑁))
154 rabexg 5255 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑇 ∈ V → {𝑡𝑇 ∣ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)} ∈ V)
15567, 154syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)} ∈ V)
15657, 148, 153, 155fvmptd3 6898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝐷‘0) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ (-(1 / 3) · 𝐸)})
157142, 156neleqtrrd 2861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ¬ 𝑡 ∈ (𝐷‘0))
1581, 157alrimi 2206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ∀𝑡 ¬ 𝑡 ∈ (𝐷‘0))
159 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑡(0...𝑁)
160 nfrab1 3317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑡{𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}
161159, 160nfmpt 5181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑡(𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
16257, 161nfcxfr 2905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑡𝐷
163 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑡0
164162, 163nffv 6784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑡(𝐷‘0)
165164eq0f 4274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐷‘0) = ∅ ↔ ∀𝑡 ¬ 𝑡 ∈ (𝐷‘0))
166158, 165sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐷‘0) = ∅)
167117, 166sylan9eqr 2800 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑗 = 1) → (𝐷‘(𝑗 − 1)) = ∅)
168167eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 = 1) → (𝑡 ∈ (𝐷‘(𝑗 − 1)) ↔ 𝑡 ∈ ∅))
169113, 168mtbiri 327 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 = 1) → ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))
170169ex 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑗 = 1 → ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1))))
171170con2d 134 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑡 ∈ (𝐷‘(𝑗 − 1)) → ¬ 𝑗 = 1))
172112, 111, 171sylc 65 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → ¬ 𝑗 = 1)
173 simplll 772 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ ¬ 𝑗 = 1) → 𝜑)
174105, 107bitrdi 287 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑡𝑇) → (𝑗 ∈ (𝐽𝑡) ↔ (𝑗 ∈ (1...𝑁) ∧ 𝑡 ∈ (𝐷𝑗))))
175174simprbda 499 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 𝑗 ∈ (1...𝑁))
17615, 17eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑁 ∈ (ℤ‘1))
177176adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗 ∈ (𝐽𝑡)) → 𝑁 ∈ (ℤ‘1))
178 elfzp12 13335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ (ℤ‘1) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 = 1 ∨ 𝑗 ∈ ((1 + 1)...𝑁))))
179177, 178syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗 ∈ (𝐽𝑡)) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 = 1 ∨ 𝑗 ∈ ((1 + 1)...𝑁))))
180179adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 = 1 ∨ 𝑗 ∈ ((1 + 1)...𝑁))))
181175, 180mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → (𝑗 = 1 ∨ 𝑗 ∈ ((1 + 1)...𝑁)))
182181orcanai 1000 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ ¬ 𝑗 = 1) → 𝑗 ∈ ((1 + 1)...𝑁))
183 fzssp1 13299 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1...(𝑁 − 1)) ⊆ (1...((𝑁 − 1) + 1))
18415nncnd 11989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑁 ∈ ℂ)
185 1cnd 10970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → 1 ∈ ℂ)
186184, 185npcand 11336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
187186oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁))
188183, 187sseqtrid 3973 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
189188adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → (1...(𝑁 − 1)) ⊆ (1...𝑁))
190 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → 𝑗 ∈ ((1 + 1)...𝑁))
191 1z 12350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1 ∈ ℤ
192 zaddcl 12360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → (1 + 1) ∈ ℤ)
193191, 191, 192mp2an 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (1 + 1) ∈ ℤ
194193a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → (1 + 1) ∈ ℤ)
19515nnzd 12425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑁 ∈ ℤ)
196195adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → 𝑁 ∈ ℤ)
197 elfzelz 13256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 ∈ ((1 + 1)...𝑁) → 𝑗 ∈ ℤ)
198197adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → 𝑗 ∈ ℤ)
199 1zzd 12351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → 1 ∈ ℤ)
200 fzsubel 13292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((1 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑗 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑗 ∈ ((1 + 1)...𝑁) ↔ (𝑗 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1))))
201194, 196, 198, 199, 200syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → (𝑗 ∈ ((1 + 1)...𝑁) ↔ (𝑗 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1))))
202190, 201mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → (𝑗 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1)))
203 ax-1cn 10929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 ∈ ℂ
204203, 203pncan3oi 11237 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((1 + 1) − 1) = 1
205204oveq1i 7285 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1 + 1) − 1)...(𝑁 − 1)) = (1...(𝑁 − 1))
206202, 205eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → (𝑗 − 1) ∈ (1...(𝑁 − 1)))
207189, 206sseldd 3922 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ((1 + 1)...𝑁)) → (𝑗 − 1) ∈ (1...𝑁))
208173, 182, 207syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ ¬ 𝑗 = 1) → (𝑗 − 1) ∈ (1...𝑁))
209208ex 413 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → (¬ 𝑗 = 1 → (𝑗 − 1) ∈ (1...𝑁)))
2102093adant3 1131 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → (¬ 𝑗 = 1 → (𝑗 − 1) ∈ (1...𝑁)))
211172, 210mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → (𝑗 − 1) ∈ (1...𝑁))
212 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝐷𝑖) = (𝐷‘(𝑗 − 1)))
213212eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑗 − 1) → (𝑡 ∈ (𝐷𝑖) ↔ 𝑡 ∈ (𝐷‘(𝑗 − 1))))
214213elrab3 3625 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 − 1) ∈ (1...𝑁) → ((𝑗 − 1) ∈ {𝑖 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑖)} ↔ 𝑡 ∈ (𝐷‘(𝑗 − 1))))
215211, 214syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → ((𝑗 − 1) ∈ {𝑖 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑖)} ↔ 𝑡 ∈ (𝐷‘(𝑗 − 1))))
216111, 215mpbird 256 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → (𝑗 − 1) ∈ {𝑖 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑖)})
217 nfcv 2907 . . . . . . . . . . . . . . . . . . . 20 𝑖(1...𝑁)
218 nfv 1917 . . . . . . . . . . . . . . . . . . . 20 𝑖 𝑡 ∈ (𝐷𝑗)
219 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . 22 𝑗𝑖
22076, 219nffv 6784 . . . . . . . . . . . . . . . . . . . . 21 𝑗(𝐷𝑖)
221220nfcri 2894 . . . . . . . . . . . . . . . . . . . 20 𝑗 𝑡 ∈ (𝐷𝑖)
222 fveq2 6774 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → (𝐷𝑗) = (𝐷𝑖))
223222eleq2d 2824 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (𝑡 ∈ (𝐷𝑗) ↔ 𝑡 ∈ (𝐷𝑖)))
22474, 217, 218, 221, 223cbvrabw 3424 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)} = {𝑖 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑖)}
225216, 224eleqtrrdi 2850 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → (𝑗 − 1) ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
22673ad2ant1 1132 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → (𝐽𝑡) = {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
227225, 226eleqtrrd 2842 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → (𝑗 − 1) ∈ (𝐽𝑡))
228 elfzelz 13256 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (1...𝑁) → 𝑗 ∈ ℤ)
229 zre 12323 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℤ → 𝑗 ∈ ℝ)
230175, 228, 2293syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 𝑗 ∈ ℝ)
2312303adant3 1131 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → 𝑗 ∈ ℝ)
232 peano2rem 11288 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℝ → (𝑗 − 1) ∈ ℝ)
233 ltm1 11817 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℝ → (𝑗 − 1) < 𝑗)
234233adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℝ ∧ (𝑗 − 1) ∈ ℝ) → (𝑗 − 1) < 𝑗)
235 ltnle 11054 . . . . . . . . . . . . . . . . . . . 20 (((𝑗 − 1) ∈ ℝ ∧ 𝑗 ∈ ℝ) → ((𝑗 − 1) < 𝑗 ↔ ¬ 𝑗 ≤ (𝑗 − 1)))
236235ancoms 459 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℝ ∧ (𝑗 − 1) ∈ ℝ) → ((𝑗 − 1) < 𝑗 ↔ ¬ 𝑗 ≤ (𝑗 − 1)))
237234, 236mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℝ ∧ (𝑗 − 1) ∈ ℝ) → ¬ 𝑗 ≤ (𝑗 − 1))
238231, 232, 237syl2anc2 585 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → ¬ 𝑗 ≤ (𝑗 − 1))
239 breq2 5078 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑗 − 1) → (𝑗𝑘𝑗 ≤ (𝑗 − 1)))
240239notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑗 − 1) → (¬ 𝑗𝑘 ↔ ¬ 𝑗 ≤ (𝑗 − 1)))
241240rspcev 3561 . . . . . . . . . . . . . . . . 17 (((𝑗 − 1) ∈ (𝐽𝑡) ∧ ¬ 𝑗 ≤ (𝑗 − 1)) → ∃𝑘 ∈ (𝐽𝑡) ¬ 𝑗𝑘)
242227, 238, 241syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → ∃𝑘 ∈ (𝐽𝑡) ¬ 𝑗𝑘)
243 rexnal 3169 . . . . . . . . . . . . . . . 16 (∃𝑘 ∈ (𝐽𝑡) ¬ 𝑗𝑘 ↔ ¬ ∀𝑘 ∈ (𝐽𝑡)𝑗𝑘)
244242, 243sylib 217 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → ¬ ∀𝑘 ∈ (𝐽𝑡)𝑗𝑘)
2452443expia 1120 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → (𝑡 ∈ (𝐷‘(𝑗 − 1)) → ¬ ∀𝑘 ∈ (𝐽𝑡)𝑗𝑘))
246245con2d 134 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → (∀𝑘 ∈ (𝐽𝑡)𝑗𝑘 → ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1))))
247246imp 407 . . . . . . . . . . . 12 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ ∀𝑘 ∈ (𝐽𝑡)𝑗𝑘) → ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))
248110, 247eldifd 3898 . . . . . . . . . . 11 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ ∀𝑘 ∈ (𝐽𝑡)𝑗𝑘) → 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))
249248exp31 420 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝑗 ∈ (𝐽𝑡) → (∀𝑘 ∈ (𝐽𝑡)𝑗𝑘𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))))
250104, 249reximdai 3244 . . . . . . . . 9 ((𝜑𝑡𝑇) → (∃𝑗 ∈ (𝐽𝑡)∀𝑘 ∈ (𝐽𝑡)𝑗𝑘 → ∃𝑗 ∈ (𝐽𝑡)𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1)))))
251101, 250mpd 15 . . . . . . . 8 ((𝜑𝑡𝑇) → ∃𝑗 ∈ (𝐽𝑡)𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))
252 df-rex 3070 . . . . . . . 8 (∃𝑗 ∈ (𝐽𝑡)𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))) ↔ ∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1)))))
253251, 252sylib 217 . . . . . . 7 ((𝜑𝑡𝑇) → ∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1)))))
254 simprl 768 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝑗 ∈ (𝐽𝑡))
255 eldifn 4062 . . . . . . . . . . . . 13 (𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))) → ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))
256 simplr 766 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → 𝑡𝑇)
257 simpll 764 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → 𝜑)
258175adantrr 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → 𝑗 ∈ (1...𝑁))
259 simprr 770 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))
260 oveq1 7282 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = 𝑘 → (𝑗 − (1 / 3)) = (𝑘 − (1 / 3)))
261260oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 𝑘 → ((𝑗 − (1 / 3)) · 𝐸) = ((𝑘 − (1 / 3)) · 𝐸))
262261breq2d 5086 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = 𝑘 → ((𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ ((𝑘 − (1 / 3)) · 𝐸)))
263262rabbidv 3414 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑘 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑘 − (1 / 3)) · 𝐸)})
264263cbvmptv 5187 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) = (𝑘 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑘 − (1 / 3)) · 𝐸)})
26557, 264eqtri 2766 . . . . . . . . . . . . . . . . . . . . 21 𝐷 = (𝑘 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑘 − (1 / 3)) · 𝐸)})
266 oveq1 7282 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = (𝑗 − 1) → (𝑘 − (1 / 3)) = ((𝑗 − 1) − (1 / 3)))
267266oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (𝑗 − 1) → ((𝑘 − (1 / 3)) · 𝐸) = (((𝑗 − 1) − (1 / 3)) · 𝐸))
268267breq2d 5086 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑗 − 1) → ((𝐹𝑡) ≤ ((𝑘 − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)))
269268rabbidv 3414 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = (𝑗 − 1) → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑘 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)})
270 fzssp1 13299 . . . . . . . . . . . . . . . . . . . . . . . 24 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
271186oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (0...((𝑁 − 1) + 1)) = (0...𝑁))
272270, 271sseqtrid 3973 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (0...(𝑁 − 1)) ⊆ (0...𝑁))
273272adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (1...𝑁)) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
274 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
275 1zzd 12351 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (1...𝑁)) → 1 ∈ ℤ)
276195adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℤ)
277228adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℤ)
278 fzsubel 13292 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑗 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1))))
279275, 276, 277, 275, 278syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1))))
280274, 279mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1)))
281115a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (1...𝑁)) → (1 − 1) = 0)
282281oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (1...𝑁)) → ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1)))
283280, 282eleqtrd 2841 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ (0...(𝑁 − 1)))
284273, 283sseldd 3922 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ (0...𝑁))
28567adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑇 ∈ V)
286 rabexg 5255 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 ∈ V → {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)} ∈ V)
287285, 286syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (1...𝑁)) → {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)} ∈ V)
288265, 269, 284, 287fvmptd3 6898 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐷‘(𝑗 − 1)) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)})
289288eleq2d 2824 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑡 ∈ (𝐷‘(𝑗 − 1)) ↔ 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)}))
290289notbid 318 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (1...𝑁)) → (¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)) ↔ ¬ 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)}))
291290biimpa 477 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1))) → ¬ 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)})
292257, 258, 259, 291syl21anc 835 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → ¬ 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)})
293 rabid 3310 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)} ↔ (𝑡𝑇 ∧ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)))
294230adantrr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → 𝑗 ∈ ℝ)
295 recn 10961 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℝ → 𝑗 ∈ ℂ)
296 1cnd 10970 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℝ → 1 ∈ ℂ)
297 1re 10975 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ∈ ℝ
298297, 22, 233pm3.2i 1338 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0)
299 redivcl 11694 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → (1 / 3) ∈ ℝ)
300 recn 10961 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 / 3) ∈ ℝ → (1 / 3) ∈ ℂ)
301298, 299, 300mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 / 3) ∈ ℂ
302301a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℝ → (1 / 3) ∈ ℂ)
303295, 296, 302subsub4d 11363 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℝ → ((𝑗 − 1) − (1 / 3)) = (𝑗 − (1 + (1 / 3))))
304 3cn 12054 . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 ∈ ℂ
305304, 203, 304, 23divdiri 11732 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((3 + 1) / 3) = ((3 / 3) + (1 / 3))
306 3p1e4 12118 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (3 + 1) = 4
307306oveq1i 7285 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((3 + 1) / 3) = (4 / 3)
308304, 23dividi 11708 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (3 / 3) = 1
309308oveq1i 7285 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((3 / 3) + (1 / 3)) = (1 + (1 / 3))
310305, 307, 3093eqtr3i 2774 . . . . . . . . . . . . . . . . . . . . . . . 24 (4 / 3) = (1 + (1 / 3))
311310a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℝ → (4 / 3) = (1 + (1 / 3)))
312311oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℝ → (𝑗 − (4 / 3)) = (𝑗 − (1 + (1 / 3))))
313303, 312eqtr4d 2781 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℝ → ((𝑗 − 1) − (1 / 3)) = (𝑗 − (4 / 3)))
314313oveq1d 7290 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℝ → (((𝑗 − 1) − (1 / 3)) · 𝐸) = ((𝑗 − (4 / 3)) · 𝐸))
315294, 314syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → (((𝑗 − 1) − (1 / 3)) · 𝐸) = ((𝑗 − (4 / 3)) · 𝐸))
316315breq2d 5086 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → ((𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸)))
317316anbi2d 629 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → ((𝑡𝑇 ∧ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)) ↔ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸))))
318293, 317syl5bb 283 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → (𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝑗 − 1) − (1 / 3)) · 𝐸)} ↔ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸))))
319292, 318mtbid 324 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → ¬ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸)))
320 imnan 400 . . . . . . . . . . . . . . 15 ((𝑡𝑇 → ¬ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸)) ↔ ¬ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸)))
321319, 320sylibr 233 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → (𝑡𝑇 → ¬ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸)))
322256, 321mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ ¬ 𝑡 ∈ (𝐷‘(𝑗 − 1)))) → ¬ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸))
323255, 322sylanr2 680 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → ¬ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸))
324230adantrr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝑗 ∈ ℝ)
325 4re 12057 . . . . . . . . . . . . . . . . 17 4 ∈ ℝ
326325a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 4 ∈ ℝ)
32722a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 3 ∈ ℝ)
32823a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 3 ≠ 0)
329326, 327, 328redivcld 11803 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (4 / 3) ∈ ℝ)
330324, 329resubcld 11403 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (𝑗 − (4 / 3)) ∈ ℝ)
33137ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝐸 ∈ ℝ)
332 remulcl 10956 . . . . . . . . . . . . . . 15 (((𝑗 − (4 / 3)) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ)
333332rexrd 11025 . . . . . . . . . . . . . 14 (((𝑗 − (4 / 3)) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ*)
334330, 331, 333syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → ((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ*)
33546rexrd 11025 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ*)
336335adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (𝐹𝑡) ∈ ℝ*)
337 xrltnle 11042 . . . . . . . . . . . . 13 ((((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ* ∧ (𝐹𝑡) ∈ ℝ*) → (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ↔ ¬ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸)))
338334, 336, 337syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ↔ ¬ (𝐹𝑡) ≤ ((𝑗 − (4 / 3)) · 𝐸)))
339323, 338mpbird 256 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡))
340 simpl 483 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (𝜑𝑡𝑇))
341 simprr 770 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))
342341eldifad 3899 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝑡 ∈ (𝐷𝑗))
343 simplll 772 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝜑)
344175adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑗 ∈ (1...𝑁))
345 simpr 485 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑡 ∈ (𝐷𝑗))
346 oveq1 7282 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑗 → (𝑘 − (1 / 3)) = (𝑗 − (1 / 3)))
347346oveq1d 7290 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑗 → ((𝑘 − (1 / 3)) · 𝐸) = ((𝑗 − (1 / 3)) · 𝐸))
348347breq2d 5086 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → ((𝐹𝑡) ≤ ((𝑘 − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)))
349348rabbidv 3414 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑘 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
350 fz1ssfz0 13352 . . . . . . . . . . . . . . . . . . . 20 (1...𝑁) ⊆ (0...𝑁)
351350sseli 3917 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑁) → 𝑗 ∈ (0...𝑁))
352351adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (0...𝑁))
353 rabexg 5255 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ V → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ V)
354285, 353syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (1...𝑁)) → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ V)
355265, 349, 352, 354fvmptd3 6898 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐷𝑗) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
356355eleq2d 2824 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑡 ∈ (𝐷𝑗) ↔ 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}))
357356biimpa 477 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝑁)) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
358343, 344, 345, 357syl21anc 835 . . . . . . . . . . . . . 14 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
359 rabid 3310 . . . . . . . . . . . . . 14 (𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ↔ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)))
360358, 359sylib 217 . . . . . . . . . . . . 13 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑡 ∈ (𝐷𝑗)) → (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)))
361360simprd 496 . . . . . . . . . . . 12 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑡 ∈ (𝐷𝑗)) → (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))
362340, 254, 342, 361syl21anc 835 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))
363339, 362jca 512 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)))
36415ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝑁 ∈ ℕ)
365 simplr 766 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝑡𝑇)
366175adantrr 714 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝑗 ∈ (1...𝑁))
367 nfv 1917 . . . . . . . . . . . . . . . 16 𝑗 𝑖 ∈ (0...𝑁)
368102, 367nfan 1902 . . . . . . . . . . . . . . 15 𝑗(𝜑𝑖 ∈ (0...𝑁))
369 nfv 1917 . . . . . . . . . . . . . . 15 𝑗(𝑋𝑖):𝑇⟶ℝ
370368, 369nfim 1899 . . . . . . . . . . . . . 14 𝑗((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
371 eleq1w 2821 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑖 → (𝑗 ∈ (0...𝑁) ↔ 𝑖 ∈ (0...𝑁)))
372371anbi2d 629 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → ((𝜑𝑗 ∈ (0...𝑁)) ↔ (𝜑𝑖 ∈ (0...𝑁))))
373 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑖 → (𝑋𝑗) = (𝑋𝑖))
374373feq1d 6585 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → ((𝑋𝑗):𝑇⟶ℝ ↔ (𝑋𝑖):𝑇⟶ℝ))
375372, 374imbi12d 345 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (((𝜑𝑗 ∈ (0...𝑁)) → (𝑋𝑗):𝑇⟶ℝ) ↔ ((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)))
376 stoweidlem34.14 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑋𝑗):𝑇⟶ℝ)
377370, 375, 376chvarfv 2233 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
378377ad4ant14 749 . . . . . . . . . . . 12 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
379 simplll 772 . . . . . . . . . . . . 13 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (0...𝑁)) → 𝜑)
380 simpr 485 . . . . . . . . . . . . 13 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (0...𝑁)) → 𝑖 ∈ (0...𝑁))
381 simpllr 773 . . . . . . . . . . . . 13 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (0...𝑁)) → 𝑡𝑇)
382102, 367, 103nf3an 1904 . . . . . . . . . . . . . . 15 𝑗(𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇)
383 nfv 1917 . . . . . . . . . . . . . . 15 𝑗((𝑋𝑖)‘𝑡) ≤ 1
384382, 383nfim 1899 . . . . . . . . . . . . . 14 𝑗((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → ((𝑋𝑖)‘𝑡) ≤ 1)
3853713anbi2d 1440 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡𝑇) ↔ (𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇)))
386373fveq1d 6776 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑖 → ((𝑋𝑗)‘𝑡) = ((𝑋𝑖)‘𝑡))
387386breq1d 5084 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (((𝑋𝑗)‘𝑡) ≤ 1 ↔ ((𝑋𝑖)‘𝑡) ≤ 1))
388385, 387imbi12d 345 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡𝑇) → ((𝑋𝑗)‘𝑡) ≤ 1) ↔ ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → ((𝑋𝑖)‘𝑡) ≤ 1)))
389 stoweidlem34.16 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡𝑇) → ((𝑋𝑗)‘𝑡) ≤ 1)
390384, 388, 389chvarfv 2233 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → ((𝑋𝑖)‘𝑡) ≤ 1)
391379, 380, 381, 390syl3anc 1370 . . . . . . . . . . . 12 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ≤ 1)
392 simplll 772 . . . . . . . . . . . . 13 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝜑)
393 0zd 12331 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 0 ∈ ℤ)
394 elfzel2 13254 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑗...𝑁) → 𝑁 ∈ ℤ)
395394adantl 482 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑁 ∈ ℤ)
396 elfzelz 13256 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑗...𝑁) → 𝑖 ∈ ℤ)
397396adantl 482 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ ℤ)
398 0red 10978 . . . . . . . . . . . . . . . 16 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 0 ∈ ℝ)
399 elfzel1 13255 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (𝑗...𝑁) → 𝑗 ∈ ℤ)
400399zred 12426 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (𝑗...𝑁) → 𝑗 ∈ ℝ)
401400adantl 482 . . . . . . . . . . . . . . . 16 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑗 ∈ ℝ)
402396zred 12426 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (𝑗...𝑁) → 𝑖 ∈ ℝ)
403402adantl 482 . . . . . . . . . . . . . . . 16 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ ℝ)
404 0red 10978 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 0 ∈ ℝ)
405 1red 10976 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 1 ∈ ℝ)
406 0le1 11498 . . . . . . . . . . . . . . . . . . 19 0 ≤ 1
407406a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 0 ≤ 1)
408 elfzle1 13259 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑁) → 1 ≤ 𝑗)
409175, 408syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 1 ≤ 𝑗)
410404, 405, 230, 407, 409letrd 11132 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) → 0 ≤ 𝑗)
411410adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 0 ≤ 𝑗)
412 elfzle1 13259 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (𝑗...𝑁) → 𝑗𝑖)
413412adantl 482 . . . . . . . . . . . . . . . 16 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑗𝑖)
414398, 401, 403, 411, 413letrd 11132 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 0 ≤ 𝑖)
415 elfzle2 13260 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑗...𝑁) → 𝑖𝑁)
416415adantl 482 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖𝑁)
417393, 395, 397, 414, 416elfzd 13247 . . . . . . . . . . . . . 14 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ (0...𝑁))
418417adantlrr 718 . . . . . . . . . . . . 13 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ (0...𝑁))
419 simpll 764 . . . . . . . . . . . . . 14 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝜑𝑡𝑇))
420 simplrl 774 . . . . . . . . . . . . . 14 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑗 ∈ (𝐽𝑡))
421 simplrr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))
422421eldifad 3899 . . . . . . . . . . . . . 14 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑡 ∈ (𝐷𝑗))
423 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ (𝑗...𝑁))
424 simpl1 1190 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝜑𝑡𝑇))
425424simprd 496 . . . . . . . . . . . . . . . 16 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑡𝑇)
426424, 46syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝐹𝑡) ∈ ℝ)
427400adantl 482 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑗 ∈ ℝ)
42824a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (1 / 3) ∈ ℝ)
429427, 428resubcld 11403 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝑗 − (1 / 3)) ∈ ℝ)
430 simpl1l 1223 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝜑)
431430, 37syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝐸 ∈ ℝ)
432429, 431remulcld 11005 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → ((𝑗 − (1 / 3)) · 𝐸) ∈ ℝ)
433402adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ ℝ)
43424a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (1 / 3) ∈ ℝ)
435433, 434resubcld 11403 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝑖 − (1 / 3)) ∈ ℝ)
43637adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝐸 ∈ ℝ)
437435, 436remulcld 11005 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (𝑗...𝑁)) → ((𝑖 − (1 / 3)) · 𝐸) ∈ ℝ)
438430, 437sylancom 588 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → ((𝑖 − (1 / 3)) · 𝐸) ∈ ℝ)
439 simpl3 1192 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑡 ∈ (𝐷𝑗))
440 simpl2 1191 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑗 ∈ (𝐽𝑡))
441424, 440, 175syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑗 ∈ (1...𝑁))
442430, 441, 355syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝐷𝑗) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
443439, 442eleqtrd 2841 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
444443, 359sylib 217 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)))
445444simprd 496 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))
446402adantl 482 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ ℝ)
447412adantl 482 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑗𝑖)
448427, 446, 428, 447lesub1dd 11591 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝑗 − (1 / 3)) ≤ (𝑖 − (1 / 3)))
449430, 435sylancom 588 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝑖 − (1 / 3)) ∈ ℝ)
45036rpregt0d 12778 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
451430, 450syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
452 lemul1 11827 . . . . . . . . . . . . . . . . . . 19 (((𝑗 − (1 / 3)) ∈ ℝ ∧ (𝑖 − (1 / 3)) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → ((𝑗 − (1 / 3)) ≤ (𝑖 − (1 / 3)) ↔ ((𝑗 − (1 / 3)) · 𝐸) ≤ ((𝑖 − (1 / 3)) · 𝐸)))
453429, 449, 451, 452syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → ((𝑗 − (1 / 3)) ≤ (𝑖 − (1 / 3)) ↔ ((𝑗 − (1 / 3)) · 𝐸) ≤ ((𝑖 − (1 / 3)) · 𝐸)))
454448, 453mpbid 231 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → ((𝑗 − (1 / 3)) · 𝐸) ≤ ((𝑖 − (1 / 3)) · 𝐸))
455426, 432, 438, 445, 454letrd 11132 . . . . . . . . . . . . . . . 16 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸))
456 rabid 3310 . . . . . . . . . . . . . . . 16 (𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)} ↔ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)))
457425, 455, 456sylanbrc 583 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)})
458 simpr 485 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ (𝑗...𝑁))
459 0zd 12331 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑖 ∈ (𝑗...𝑁)) → 0 ∈ ℤ)
4603943ad2ant3 1134 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑁 ∈ ℤ)
4613963ad2ant3 1134 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ ℤ)
462459, 460, 4613jca 1127 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑖 ∈ (𝑗...𝑁)) → (0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ))
463414, 416jca 512 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (0 ≤ 𝑖𝑖𝑁))
4644633impa 1109 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑖 ∈ (𝑗...𝑁)) → (0 ≤ 𝑖𝑖𝑁))
465 elfz2 13246 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0...𝑁) ↔ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (0 ≤ 𝑖𝑖𝑁)))
466462, 464, 465sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ (0...𝑁))
467424, 440, 458, 466syl3anc 1370 . . . . . . . . . . . . . . . 16 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ (0...𝑁))
468 oveq1 7282 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (𝑗 − (1 / 3)) = (𝑖 − (1 / 3)))
469468oveq1d 7290 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → ((𝑗 − (1 / 3)) · 𝐸) = ((𝑖 − (1 / 3)) · 𝐸))
470469breq2d 5086 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → ((𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)))
471470rabbidv 3414 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑖 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)})
472 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0...𝑁)) → 𝑖 ∈ (0...𝑁))
473 rabexg 5255 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ V → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)} ∈ V)
47467, 473syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)} ∈ V)
475474adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0...𝑁)) → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)} ∈ V)
47657, 471, 472, 475fvmptd3 6898 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑁)) → (𝐷𝑖) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)})
477430, 467, 476syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → (𝐷𝑖) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑖 − (1 / 3)) · 𝐸)})
478457, 477eleqtrrd 2842 . . . . . . . . . . . . . 14 ((((𝜑𝑡𝑇) ∧ 𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ (𝐷𝑗)) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑡 ∈ (𝐷𝑖))
479419, 420, 422, 423, 478syl31anc 1372 . . . . . . . . . . . . 13 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → 𝑡 ∈ (𝐷𝑖))
480102, 367, 221nf3an 1904 . . . . . . . . . . . . . . 15 𝑗(𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑖))
481 nfv 1917 . . . . . . . . . . . . . . 15 𝑗((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁)
482480, 481nfim 1899 . . . . . . . . . . . . . 14 𝑗((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑖)) → ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁))
483371, 2233anbi23d 1438 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑗)) ↔ (𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑖))))
484386breq1d 5084 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (((𝑋𝑗)‘𝑡) < (𝐸 / 𝑁) ↔ ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁)))
485483, 484imbi12d 345 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑗)) → ((𝑋𝑗)‘𝑡) < (𝐸 / 𝑁)) ↔ ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑖)) → ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁))))
486 stoweidlem34.17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑗)) → ((𝑋𝑗)‘𝑡) < (𝐸 / 𝑁))
487482, 485, 486chvarfv 2233 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷𝑖)) → ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁))
488392, 418, 479, 487syl3anc 1370 . . . . . . . . . . . 12 ((((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) ∧ 𝑖 ∈ (𝑗...𝑁)) → ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁))
48936ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝐸 ∈ ℝ+)
490 stoweidlem34.13 . . . . . . . . . . . . 13 (𝜑𝐸 < (1 / 3))
491490ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → 𝐸 < (1 / 3))
492364, 365, 366, 378, 391, 488, 489, 491stoweidlem11 43552 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸))
493 eleq1w 2821 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑗 → (𝑙 ∈ (𝐽𝑡) ↔ 𝑗 ∈ (𝐽𝑡)))
494 fveq2 6774 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑗 → (𝐷𝑙) = (𝐷𝑗))
495 oveq1 7282 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑗 → (𝑙 − 1) = (𝑗 − 1))
496495fveq2d 6778 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑗 → (𝐷‘(𝑙 − 1)) = (𝐷‘(𝑗 − 1)))
497494, 496difeq12d 4058 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑗 → ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))) = ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))
498497eleq2d 2824 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑗 → (𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))) ↔ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1)))))
499493, 498anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑗 → ((𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))) ↔ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))))
500499anbi2d 629 . . . . . . . . . . . . . . 15 (𝑙 = 𝑗 → (((𝜑𝑡𝑇) ∧ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) ↔ ((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1)))))))
501 oveq1 7282 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑗 → (𝑙 − (4 / 3)) = (𝑗 − (4 / 3)))
502501oveq1d 7290 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑗 → ((𝑙 − (4 / 3)) · 𝐸) = ((𝑗 − (4 / 3)) · 𝐸))
503502breq1d 5084 . . . . . . . . . . . . . . 15 (𝑙 = 𝑗 → (((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) ↔ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))
504500, 503imbi12d 345 . . . . . . . . . . . . . 14 (𝑙 = 𝑗 → ((((𝜑𝑡𝑇) ∧ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → ((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)) ↔ (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))))
505 eleq1w 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑡 → (𝑠𝑇𝑡𝑇))
506505anbi2d 629 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑡 → ((𝜑𝑠𝑇) ↔ (𝜑𝑡𝑇)))
507 fveq2 6774 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝑡 → (𝐽𝑠) = (𝐽𝑡))
508507eleq2d 2824 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑡 → (𝑙 ∈ (𝐽𝑠) ↔ 𝑙 ∈ (𝐽𝑡)))
509 eleq1w 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑡 → (𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))) ↔ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))))
510508, 509anbi12d 631 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑡 → ((𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))) ↔ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))))
511506, 510anbi12d 631 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑡 → (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) ↔ ((𝜑𝑡𝑇) ∧ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))))))
512 fveq2 6774 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑡 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑠) = ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))
513512breq2d 5086 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑡 → (((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑠) ↔ ((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))
514511, 513imbi12d 345 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑡 → ((((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → ((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑠)) ↔ (((𝜑𝑡𝑇) ∧ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → ((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))))
515 stoweidlem34.1 . . . . . . . . . . . . . . . . . 18 𝑡𝐹
516 nfv 1917 . . . . . . . . . . . . . . . . . . . 20 𝑗 𝑠𝑇
517102, 516nfan 1902 . . . . . . . . . . . . . . . . . . 19 𝑗(𝜑𝑠𝑇)
518 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . 22 𝑗𝑠
51991, 518nffv 6784 . . . . . . . . . . . . . . . . . . . . 21 𝑗(𝐽𝑠)
520519nfcri 2894 . . . . . . . . . . . . . . . . . . . 20 𝑗 𝑙 ∈ (𝐽𝑠)
521 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗𝑙
52276, 521nffv 6784 . . . . . . . . . . . . . . . . . . . . . 22 𝑗(𝐷𝑙)
523 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗(𝑙 − 1)
52476, 523nffv 6784 . . . . . . . . . . . . . . . . . . . . . 22 𝑗(𝐷‘(𝑙 − 1))
525522, 524nfdif 4060 . . . . . . . . . . . . . . . . . . . . 21 𝑗((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))
526525nfcri 2894 . . . . . . . . . . . . . . . . . . . 20 𝑗 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))
527520, 526nfan 1902 . . . . . . . . . . . . . . . . . . 19 𝑗(𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))
528517, 527nfan 1902 . . . . . . . . . . . . . . . . . 18 𝑗((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))))
529 nfv 1917 . . . . . . . . . . . . . . . . . . . 20 𝑡 𝑠𝑇
5301, 529nfan 1902 . . . . . . . . . . . . . . . . . . 19 𝑡(𝜑𝑠𝑇)
531 nfmpt1 5182 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡(𝑡𝑇 ↦ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)})
5325, 531nfcxfr 2905 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝐽
533 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑠
534532, 533nffv 6784 . . . . . . . . . . . . . . . . . . . . 21 𝑡(𝐽𝑠)
535534nfcri 2894 . . . . . . . . . . . . . . . . . . . 20 𝑡 𝑙 ∈ (𝐽𝑠)
536 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡𝑙
537162, 536nffv 6784 . . . . . . . . . . . . . . . . . . . . . 22 𝑡(𝐷𝑙)
538 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡(𝑙 − 1)
539162, 538nffv 6784 . . . . . . . . . . . . . . . . . . . . . 22 𝑡(𝐷‘(𝑙 − 1))
540537, 539nfdif 4060 . . . . . . . . . . . . . . . . . . . . 21 𝑡((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))
541540nfcri 2894 . . . . . . . . . . . . . . . . . . . 20 𝑡 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))
542535, 541nfan 1902 . . . . . . . . . . . . . . . . . . 19 𝑡(𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))
543530, 542nfan 1902 . . . . . . . . . . . . . . . . . 18 𝑡((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1)))))
544 stoweidlem34.5 . . . . . . . . . . . . . . . . . 18 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
54515ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → 𝑁 ∈ ℕ)
54667ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → 𝑇 ∈ V)
5473rabex 5256 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)} ∈ V
548 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑡𝑗
549162, 548nffv 6784 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑡(𝐷𝑗)
550549nfcri 2894 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑡 𝑠 ∈ (𝐷𝑗)
551 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑡(1...𝑁)
552550, 551nfrabw 3318 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑡{𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)}
553 eleq1w 2821 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (𝑡 ∈ (𝐷𝑗) ↔ 𝑠 ∈ (𝐷𝑗)))
554553rabbidv 3414 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑠 → {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷𝑗)} = {𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)})
555533, 552, 554, 5fvmptf 6896 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠𝑇 ∧ {𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)} ∈ V) → (𝐽𝑠) = {𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)})
556547, 555mpan2 688 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠𝑇 → (𝐽𝑠) = {𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)})
557556eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠𝑇 → (𝑙 ∈ (𝐽𝑠) ↔ 𝑙 ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)}))
558557biimpa 477 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠𝑇𝑙 ∈ (𝐽𝑠)) → 𝑙 ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)})
559522nfcri 2894 . . . . . . . . . . . . . . . . . . . . . 22 𝑗 𝑠 ∈ (𝐷𝑙)
560 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑙 → (𝐷𝑗) = (𝐷𝑙))
561560eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑙 → (𝑠 ∈ (𝐷𝑗) ↔ 𝑠 ∈ (𝐷𝑙)))
562521, 74, 559, 561elrabf 3620 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ {𝑗 ∈ (1...𝑁) ∣ 𝑠 ∈ (𝐷𝑗)} ↔ (𝑙 ∈ (1...𝑁) ∧ 𝑠 ∈ (𝐷𝑙)))
563558, 562sylib 217 . . . . . . . . . . . . . . . . . . . 20 ((𝑠𝑇𝑙 ∈ (𝐽𝑠)) → (𝑙 ∈ (1...𝑁) ∧ 𝑠 ∈ (𝐷𝑙)))
564563simpld 495 . . . . . . . . . . . . . . . . . . 19 ((𝑠𝑇𝑙 ∈ (𝐽𝑠)) → 𝑙 ∈ (1...𝑁))
565564ad2ant2lr 745 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → 𝑙 ∈ (1...𝑁))
566 simprr 770 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))
56745ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → 𝐹:𝑇⟶ℝ)
56836ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → 𝐸 ∈ ℝ+)
569490ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → 𝐸 < (1 / 3))
570377ad4ant14 749 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) ∧ 𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
571 simp1ll 1235 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) ∧ 𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → 𝜑)
572 nfv 1917 . . . . . . . . . . . . . . . . . . . . 21 𝑗0 ≤ ((𝑋𝑖)‘𝑡)
573382, 572nfim 1899 . . . . . . . . . . . . . . . . . . . 20 𝑗((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑖)‘𝑡))
574386breq2d 5086 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → (0 ≤ ((𝑋𝑗)‘𝑡) ↔ 0 ≤ ((𝑋𝑖)‘𝑡)))
575385, 574imbi12d 345 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑗)‘𝑡)) ↔ ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑖)‘𝑡))))
576 stoweidlem34.15 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑗)‘𝑡))
577573, 575, 576chvarfv 2233 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑖)‘𝑡))
578571, 577syld3an1 1409 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) ∧ 𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑖)‘𝑡))
579 simp1ll 1235 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) ∧ 𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) → 𝜑)
580 nfmpt1 5182 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑗(𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
581544, 580nfcxfr 2905 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑗𝐵
582581, 219nffv 6784 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗(𝐵𝑖)
583582nfcri 2894 . . . . . . . . . . . . . . . . . . . . . 22 𝑗 𝑡 ∈ (𝐵𝑖)
584102, 367, 583nf3an 1904 . . . . . . . . . . . . . . . . . . . . 21 𝑗(𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖))
585 nfv 1917 . . . . . . . . . . . . . . . . . . . . 21 𝑗(1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡)
586584, 585nfim 1899 . . . . . . . . . . . . . . . . . . . 20 𝑗((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡))
587 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑖 → (𝐵𝑗) = (𝐵𝑖))
588587eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑖 → (𝑡 ∈ (𝐵𝑗) ↔ 𝑡 ∈ (𝐵𝑖)))
589371, 5883anbi23d 1438 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑗)) ↔ (𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖))))
590386breq2d 5086 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → ((1 − (𝐸 / 𝑁)) < ((𝑋𝑗)‘𝑡) ↔ (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡)))
591589, 590imbi12d 345 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑗)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑗)‘𝑡)) ↔ ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡))))
592 stoweidlem34.18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑗)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑗)‘𝑡))
593586, 591, 592chvarfv 2233 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡))
594579, 593syld3an1 1409 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) ∧ 𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡))
595515, 528, 543, 57, 544, 545, 546, 565, 566, 567, 568, 569, 570, 578, 594stoweidlem26 43567 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠𝑇) ∧ (𝑙 ∈ (𝐽𝑠) ∧ 𝑠 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → ((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑠))
596514, 595vtoclg 3505 . . . . . . . . . . . . . . . 16 (𝑡𝑇 → (((𝜑𝑡𝑇) ∧ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → ((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))
597596ad2antlr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → (((𝜑𝑡𝑇) ∧ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → ((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))
598597pm2.43i 52 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ (𝑙 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑙) ∖ (𝐷‘(𝑙 − 1))))) → ((𝑙 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))
599504, 598vtoclg 3505 . . . . . . . . . . . . 13 (𝑗 ∈ (𝐽𝑡) → (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))
600599ad2antrl 725 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))
601600pm2.43i 52 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))
602492, 601jca 512 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))
603254, 363, 6023jca 1127 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ (𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1))))) → (𝑗 ∈ (𝐽𝑡) ∧ (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))))
604603ex 413 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1)))) → (𝑗 ∈ (𝐽𝑡) ∧ (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))))
605104, 604eximd 2209 . . . . . . 7 ((𝜑𝑡𝑇) → (∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ 𝑡 ∈ ((𝐷𝑗) ∖ (𝐷‘(𝑗 − 1)))) → ∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))))
606253, 605mpd 15 . . . . . 6 ((𝜑𝑡𝑇) → ∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))))
607 3anass 1094 . . . . . . 7 ((𝑗 ∈ (𝐽𝑡) ∧ (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))) ↔ (𝑗 ∈ (𝐽𝑡) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))))
608607exbii 1850 . . . . . 6 (∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ (((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))) ↔ ∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))))
609606, 608sylib 217 . . . . 5 ((𝜑𝑡𝑇) → ∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))))
610 df-rex 3070 . . . . 5 (∃𝑗 ∈ (𝐽𝑡)((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))) ↔ ∃𝑗(𝑗 ∈ (𝐽𝑡) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))))
611609, 610sylibr 233 . . . 4 ((𝜑𝑡𝑇) → ∃𝑗 ∈ (𝐽𝑡)((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))))
612 nfcv 2907 . . . . 5 𝑗
61393, 612ssrexf 3985 . . . 4 ((𝐽𝑡) ⊆ ℝ → (∃𝑗 ∈ (𝐽𝑡)((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))) → ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))))
61414, 611, 613sylc 65 . . 3 ((𝜑𝑡𝑇) → ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))))
615614ex 413 . 2 (𝜑 → (𝑡𝑇 → ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)))))
6161, 615ralrimi 3141 1 (𝜑 → ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086  wal 1537   = wceq 1539  wex 1782  wnf 1786  wcel 2106  wnfc 2887  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  wss 3887  c0 4256   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  3c3 12029  4c4 12030  0cn0 12233  cz 12319  cuz 12582  +crp 12730  ...cfz 13239  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  stoweidlem60  43601
  Copyright terms: Public domain W3C validator