Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressn2 | Structured version Visualization version GIF version |
Description: A class ' R ' restricted to the singleton of the class ' A ' is the ordered pair class abstraction of the class ' A ' and the sets in relation ' R ' to ' A ' (and not in relation to the singleton ' { A } ' ). (Contributed by Peter Mazsa, 16-Jun-2024.) |
Ref | Expression |
---|---|
ressn2 | ⊢ (𝑅 ↾ {𝐴}) = {〈𝑎, 𝑢〉 ∣ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfres2 5961 | . 2 ⊢ (𝑅 ↾ {𝐴}) = {〈𝑎, 𝑢〉 ∣ (𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢)} | |
2 | velsn 4581 | . . . . 5 ⊢ (𝑎 ∈ {𝐴} ↔ 𝑎 = 𝐴) | |
3 | 2 | anbi1i 625 | . . . 4 ⊢ ((𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢) ↔ (𝑎 = 𝐴 ∧ 𝑎𝑅𝑢)) |
4 | eqbrb 36438 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑎𝑅𝑢) ↔ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)) | |
5 | 3, 4 | bitri 275 | . . 3 ⊢ ((𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢) ↔ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)) |
6 | 5 | opabbii 5148 | . 2 ⊢ {〈𝑎, 𝑢〉 ∣ (𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢)} = {〈𝑎, 𝑢〉 ∣ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)} |
7 | 1, 6 | eqtri 2764 | 1 ⊢ (𝑅 ↾ {𝐴}) = {〈𝑎, 𝑢〉 ∣ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1539 ∈ wcel 2104 {csn 4565 class class class wbr 5081 {copab 5143 ↾ cres 5602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-res 5612 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |