![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressn2 | Structured version Visualization version GIF version |
Description: A class ' R ' restricted to the singleton of the class ' A ' is the ordered pair class abstraction of the class ' A ' and the sets in relation ' R ' to ' A ' (and not in relation to the singleton ' { A } ' ). (Contributed by Peter Mazsa, 16-Jun-2024.) |
Ref | Expression |
---|---|
ressn2 | ⊢ (𝑅 ↾ {𝐴}) = {⟨𝑎, 𝑢⟩ ∣ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfres2 6045 | . 2 ⊢ (𝑅 ↾ {𝐴}) = {⟨𝑎, 𝑢⟩ ∣ (𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢)} | |
2 | velsn 4645 | . . . . 5 ⊢ (𝑎 ∈ {𝐴} ↔ 𝑎 = 𝐴) | |
3 | 2 | anbi1i 623 | . . . 4 ⊢ ((𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢) ↔ (𝑎 = 𝐴 ∧ 𝑎𝑅𝑢)) |
4 | eqbrb 37703 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑎𝑅𝑢) ↔ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)) | |
5 | 3, 4 | bitri 275 | . . 3 ⊢ ((𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢) ↔ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)) |
6 | 5 | opabbii 5215 | . 2 ⊢ {⟨𝑎, 𝑢⟩ ∣ (𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢)} = {⟨𝑎, 𝑢⟩ ∣ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)} |
7 | 1, 6 | eqtri 2756 | 1 ⊢ (𝑅 ↾ {𝐴}) = {⟨𝑎, 𝑢⟩ ∣ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1534 ∈ wcel 2099 {csn 4629 class class class wbr 5148 {copab 5210 ↾ cres 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-rel 5685 df-res 5690 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |