| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressn2 | Structured version Visualization version GIF version | ||
| Description: A class ' R ' restricted to the singleton of the class ' A ' is the ordered pair class abstraction of the class ' A ' and the sets in relation ' R ' to ' A ' (and not in relation to the singleton ' { A } ' ). (Contributed by Peter Mazsa, 16-Jun-2024.) |
| Ref | Expression |
|---|---|
| ressn2 | ⊢ (𝑅 ↾ {𝐴}) = {〈𝑎, 𝑢〉 ∣ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfres2 6059 | . 2 ⊢ (𝑅 ↾ {𝐴}) = {〈𝑎, 𝑢〉 ∣ (𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢)} | |
| 2 | velsn 4642 | . . . . 5 ⊢ (𝑎 ∈ {𝐴} ↔ 𝑎 = 𝐴) | |
| 3 | 2 | anbi1i 624 | . . . 4 ⊢ ((𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢) ↔ (𝑎 = 𝐴 ∧ 𝑎𝑅𝑢)) |
| 4 | eqbrb 38234 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑎𝑅𝑢) ↔ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)) | |
| 5 | 3, 4 | bitri 275 | . . 3 ⊢ ((𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢) ↔ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)) |
| 6 | 5 | opabbii 5210 | . 2 ⊢ {〈𝑎, 𝑢〉 ∣ (𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢)} = {〈𝑎, 𝑢〉 ∣ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)} |
| 7 | 1, 6 | eqtri 2765 | 1 ⊢ (𝑅 ↾ {𝐴}) = {〈𝑎, 𝑢〉 ∣ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 {csn 4626 class class class wbr 5143 {copab 5205 ↾ cres 5687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-res 5697 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |