Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressn2 Structured version   Visualization version   GIF version

Theorem ressn2 38443
Description: A class ' R ' restricted to the singleton of the class ' A ' is the ordered pair class abstraction of the class ' A ' and the sets in relation ' R ' to ' A ' (and not in relation to the singleton ' { A } ' ). (Contributed by Peter Mazsa, 16-Jun-2024.)
Assertion
Ref Expression
ressn2 (𝑅 ↾ {𝐴}) = {⟨𝑎, 𝑢⟩ ∣ (𝑎 = 𝐴𝐴𝑅𝑢)}
Distinct variable groups:   𝐴,𝑎,𝑢   𝑅,𝑎,𝑢

Proof of Theorem ressn2
StepHypRef Expression
1 dfres2 6059 . 2 (𝑅 ↾ {𝐴}) = {⟨𝑎, 𝑢⟩ ∣ (𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢)}
2 velsn 4642 . . . . 5 (𝑎 ∈ {𝐴} ↔ 𝑎 = 𝐴)
32anbi1i 624 . . . 4 ((𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢) ↔ (𝑎 = 𝐴𝑎𝑅𝑢))
4 eqbrb 38234 . . . 4 ((𝑎 = 𝐴𝑎𝑅𝑢) ↔ (𝑎 = 𝐴𝐴𝑅𝑢))
53, 4bitri 275 . . 3 ((𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢) ↔ (𝑎 = 𝐴𝐴𝑅𝑢))
65opabbii 5210 . 2 {⟨𝑎, 𝑢⟩ ∣ (𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢)} = {⟨𝑎, 𝑢⟩ ∣ (𝑎 = 𝐴𝐴𝑅𝑢)}
71, 6eqtri 2765 1 (𝑅 ↾ {𝐴}) = {⟨𝑎, 𝑢⟩ ∣ (𝑎 = 𝐴𝐴𝑅𝑢)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  {csn 4626   class class class wbr 5143  {copab 5205  cres 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-res 5697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator