![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressn2 | Structured version Visualization version GIF version |
Description: A class ' R ' restricted to the singleton of the class ' A ' is the ordered pair class abstraction of the class ' A ' and the sets in relation ' R ' to ' A ' (and not in relation to the singleton ' { A } ' ). (Contributed by Peter Mazsa, 16-Jun-2024.) |
Ref | Expression |
---|---|
ressn2 | ⊢ (𝑅 ↾ {𝐴}) = {〈𝑎, 𝑢〉 ∣ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfres2 6060 | . 2 ⊢ (𝑅 ↾ {𝐴}) = {〈𝑎, 𝑢〉 ∣ (𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢)} | |
2 | velsn 4646 | . . . . 5 ⊢ (𝑎 ∈ {𝐴} ↔ 𝑎 = 𝐴) | |
3 | 2 | anbi1i 624 | . . . 4 ⊢ ((𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢) ↔ (𝑎 = 𝐴 ∧ 𝑎𝑅𝑢)) |
4 | eqbrb 38213 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑎𝑅𝑢) ↔ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)) | |
5 | 3, 4 | bitri 275 | . . 3 ⊢ ((𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢) ↔ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)) |
6 | 5 | opabbii 5214 | . 2 ⊢ {〈𝑎, 𝑢〉 ∣ (𝑎 ∈ {𝐴} ∧ 𝑎𝑅𝑢)} = {〈𝑎, 𝑢〉 ∣ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)} |
7 | 1, 6 | eqtri 2762 | 1 ⊢ (𝑅 ↾ {𝐴}) = {〈𝑎, 𝑢〉 ∣ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1536 ∈ wcel 2105 {csn 4630 class class class wbr 5147 {copab 5209 ↾ cres 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-res 5700 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |