Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem9 Structured version   Visualization version   GIF version

Theorem prtlem9 37734
Description: Lemma for prter3 37752. (Contributed by Rodolfo Medina, 25-Sep-2010.)
Assertion
Ref Expression
prtlem9 (𝐴𝐵 → ∃𝑥𝐵 [𝑥] = [𝐴] )
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   (𝑥)

Proof of Theorem prtlem9
StepHypRef Expression
1 risset 3231 . 2 (𝐴𝐵 ↔ ∃𝑥𝐵 𝑥 = 𝐴)
2 eceq1 8741 . . 3 (𝑥 = 𝐴 → [𝑥] = [𝐴] )
32reximi 3085 . 2 (∃𝑥𝐵 𝑥 = 𝐴 → ∃𝑥𝐵 [𝑥] = [𝐴] )
41, 3sylbi 216 1 (𝐴𝐵 → ∃𝑥𝐵 [𝑥] = [𝐴] )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wrex 3071  [cec 8701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ec 8705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator