|   | Mathbox for Rodolfo Medina | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem9 | Structured version Visualization version GIF version | ||
| Description: Lemma for prter3 38884. (Contributed by Rodolfo Medina, 25-Sep-2010.) | 
| Ref | Expression | 
|---|---|
| prtlem9 | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 ∈ 𝐵 [𝑥] ∼ = [𝐴] ∼ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | risset 3232 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | |
| 2 | eceq1 8785 | . . 3 ⊢ (𝑥 = 𝐴 → [𝑥] ∼ = [𝐴] ∼ ) | |
| 3 | 2 | reximi 3083 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 → ∃𝑥 ∈ 𝐵 [𝑥] ∼ = [𝐴] ∼ ) | 
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 ∈ 𝐵 [𝑥] ∼ = [𝐴] ∼ ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 [cec 8744 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ec 8748 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |