| Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem9 | Structured version Visualization version GIF version | ||
| Description: Lemma for prter3 38900. (Contributed by Rodolfo Medina, 25-Sep-2010.) |
| Ref | Expression |
|---|---|
| prtlem9 | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 ∈ 𝐵 [𝑥] ∼ = [𝐴] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risset 3205 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | |
| 2 | eceq1 8656 | . . 3 ⊢ (𝑥 = 𝐴 → [𝑥] ∼ = [𝐴] ∼ ) | |
| 3 | 2 | reximi 3068 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 → ∃𝑥 ∈ 𝐵 [𝑥] ∼ = [𝐴] ∼ ) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 ∈ 𝐵 [𝑥] ∼ = [𝐴] ∼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 [cec 8615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8619 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |