![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem9 | Structured version Visualization version GIF version |
Description: Lemma for prter3 38838. (Contributed by Rodolfo Medina, 25-Sep-2010.) |
Ref | Expression |
---|---|
prtlem9 | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 ∈ 𝐵 [𝑥] ∼ = [𝐴] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3239 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | |
2 | eceq1 8802 | . . 3 ⊢ (𝑥 = 𝐴 → [𝑥] ∼ = [𝐴] ∼ ) | |
3 | 2 | reximi 3090 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 → ∃𝑥 ∈ 𝐵 [𝑥] ∼ = [𝐴] ∼ ) |
4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 ∈ 𝐵 [𝑥] ∼ = [𝐴] ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 [cec 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |