Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem9 Structured version   Visualization version   GIF version

Theorem prtlem9 38882
Description: Lemma for prter3 38900. (Contributed by Rodolfo Medina, 25-Sep-2010.)
Assertion
Ref Expression
prtlem9 (𝐴𝐵 → ∃𝑥𝐵 [𝑥] = [𝐴] )
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   (𝑥)

Proof of Theorem prtlem9
StepHypRef Expression
1 risset 3205 . 2 (𝐴𝐵 ↔ ∃𝑥𝐵 𝑥 = 𝐴)
2 eceq1 8656 . . 3 (𝑥 = 𝐴 → [𝑥] = [𝐴] )
32reximi 3068 . 2 (∃𝑥𝐵 𝑥 = 𝐴 → ∃𝑥𝐵 [𝑥] = [𝐴] )
41, 3sylbi 217 1 (𝐴𝐵 → ∃𝑥𝐵 [𝑥] = [𝐴] )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  wrex 3054  [cec 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator