MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrelrdv2 Structured version   Visualization version   GIF version

Theorem eqrelrdv2 5808
Description: A version of eqrelrdv 5805. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Hypothesis
Ref Expression
eqrelrdv2.1 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Assertion
Ref Expression
eqrelrdv2 (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem eqrelrdv2
StepHypRef Expression
1 eqrelrdv2.1 . . . 4 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
21alrimivv 1926 . . 3 (𝜑 → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
3 eqrel 5797 . . 3 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
42, 3imbitrrid 246 . 2 ((Rel 𝐴 ∧ Rel 𝐵) → (𝜑𝐴 = 𝐵))
54imp 406 1 (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2106  cop 4637  Rel wrel 5694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-ss 3980  df-opab 5211  df-xp 5695  df-rel 5696
This theorem is referenced by:  xpiindi  5849  fliftcnv  7331  dmtpos  8262  ercnv  8765  fpwwe2lem8  10676  invsym2  17811  eqbrrdv2  38845  dibglbN  41149  diclspsn  41177  dih1  41269  dihglbcpreN  41283  dihmeetlem4preN  41289  rfovcnvf1od  43994
  Copyright terms: Public domain W3C validator