![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqrelrdv2 | Structured version Visualization version GIF version |
Description: A version of eqrelrdv 5793. (Contributed by Rodolfo Medina, 10-Oct-2010.) |
Ref | Expression |
---|---|
eqrelrdv2.1 | ⊢ (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
Ref | Expression |
---|---|
eqrelrdv2 | ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrelrdv2.1 | . . . 4 ⊢ (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) | |
2 | 1 | alrimivv 1932 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
3 | eqrel 5785 | . . 3 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))) | |
4 | 2, 3 | imbitrrid 245 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝜑 → 𝐴 = 𝐵)) |
5 | 4 | imp 408 | 1 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ⟨cop 4635 Rel wrel 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-opab 5212 df-xp 5683 df-rel 5684 |
This theorem is referenced by: xpiindi 5836 fliftcnv 7308 dmtpos 8223 ercnv 8724 fpwwe2lem8 10633 invsym2 17710 eqbrrdv2 37733 dibglbN 40037 diclspsn 40065 dih1 40157 dihglbcpreN 40171 dihmeetlem4preN 40177 rfovcnvf1od 42755 |
Copyright terms: Public domain | W3C validator |