MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrelrdv2 Structured version   Visualization version   GIF version

Theorem eqrelrdv2 5758
Description: A version of eqrelrdv 5755. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Hypothesis
Ref Expression
eqrelrdv2.1 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Assertion
Ref Expression
eqrelrdv2 (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem eqrelrdv2
StepHypRef Expression
1 eqrelrdv2.1 . . . 4 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
21alrimivv 1928 . . 3 (𝜑 → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
3 eqrel 5747 . . 3 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
42, 3imbitrrid 246 . 2 ((Rel 𝐴 ∧ Rel 𝐵) → (𝜑𝐴 = 𝐵))
54imp 406 1 (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  cop 4595  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-ss 3931  df-opab 5170  df-xp 5644  df-rel 5645
This theorem is referenced by:  xpiindi  5799  fliftcnv  7286  dmtpos  8217  ercnv  8692  fpwwe2lem8  10591  invsym2  17725  eqbrrdv2  38856  dibglbN  41160  diclspsn  41188  dih1  41280  dihglbcpreN  41294  dihmeetlem4preN  41300  rfovcnvf1od  43993
  Copyright terms: Public domain W3C validator