| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqrelrdv2 | Structured version Visualization version GIF version | ||
| Description: A version of eqrelrdv 5732. (Contributed by Rodolfo Medina, 10-Oct-2010.) |
| Ref | Expression |
|---|---|
| eqrelrdv2.1 | ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| eqrelrdv2 | ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrelrdv2.1 | . . . 4 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 2 | 1 | alrimivv 1929 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 3 | eqrel 5724 | . . 3 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
| 4 | 2, 3 | imbitrrid 246 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝜑 → 𝐴 = 𝐵)) |
| 5 | 4 | imp 406 | 1 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 〈cop 4582 Rel wrel 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-opab 5154 df-xp 5622 df-rel 5623 |
| This theorem is referenced by: xpiindi 5775 fliftcnv 7245 dmtpos 8168 ercnv 8643 fpwwe2lem8 10529 invsym2 17670 eqbrrdv2 38908 dibglbN 41211 diclspsn 41239 dih1 41331 dihglbcpreN 41345 dihmeetlem4preN 41351 rfovcnvf1od 44043 |
| Copyright terms: Public domain | W3C validator |