MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrrdiv Structured version   Visualization version   GIF version

Theorem eqbrrdiv 5693
Description: Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Hypotheses
Ref Expression
eqbrrdiv.1 Rel 𝐴
eqbrrdiv.2 Rel 𝐵
eqbrrdiv.3 (𝜑 → (𝑥𝐴𝑦𝑥𝐵𝑦))
Assertion
Ref Expression
eqbrrdiv (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem eqbrrdiv
StepHypRef Expression
1 eqbrrdiv.1 . 2 Rel 𝐴
2 eqbrrdiv.2 . 2 Rel 𝐵
3 eqbrrdiv.3 . . 3 (𝜑 → (𝑥𝐴𝑦𝑥𝐵𝑦))
4 df-br 5071 . . 3 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
5 df-br 5071 . . 3 (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
63, 4, 53bitr3g 312 . 2 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
71, 2, 6eqrelrdv 5691 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  cop 4564   class class class wbr 5070  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587
This theorem is referenced by:  funcpropd  17532  fullpropd  17552  fthpropd  17553  dvres  24980  eqfunresadj  33641
  Copyright terms: Public domain W3C validator