Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqbrrdiv | Structured version Visualization version GIF version |
Description: Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010.) |
Ref | Expression |
---|---|
eqbrrdiv.1 | ⊢ Rel 𝐴 |
eqbrrdiv.2 | ⊢ Rel 𝐵 |
eqbrrdiv.3 | ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) |
Ref | Expression |
---|---|
eqbrrdiv | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrrdiv.1 | . 2 ⊢ Rel 𝐴 | |
2 | eqbrrdiv.2 | . 2 ⊢ Rel 𝐵 | |
3 | eqbrrdiv.3 | . . 3 ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) | |
4 | df-br 5071 | . . 3 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
5 | df-br 5071 | . . 3 ⊢ (𝑥𝐵𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
6 | 3, 4, 5 | 3bitr3g 312 | . 2 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
7 | 1, 2, 6 | eqrelrdv 5691 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: funcpropd 17532 fullpropd 17552 fthpropd 17553 dvres 24980 eqfunresadj 33641 |
Copyright terms: Public domain | W3C validator |