| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrrdiv | Structured version Visualization version GIF version | ||
| Description: Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010.) |
| Ref | Expression |
|---|---|
| eqbrrdiv.1 | ⊢ Rel 𝐴 |
| eqbrrdiv.2 | ⊢ Rel 𝐵 |
| eqbrrdiv.3 | ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) |
| Ref | Expression |
|---|---|
| eqbrrdiv | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrrdiv.1 | . 2 ⊢ Rel 𝐴 | |
| 2 | eqbrrdiv.2 | . 2 ⊢ Rel 𝐵 | |
| 3 | eqbrrdiv.3 | . . 3 ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) | |
| 4 | df-br 5096 | . . 3 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 5 | df-br 5096 | . . 3 ⊢ (𝑥𝐵𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
| 6 | 3, 4, 5 | 3bitr3g 313 | . 2 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 7 | 1, 2, 6 | eqrelrdv 5738 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 〈cop 4583 class class class wbr 5095 Rel wrel 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 |
| This theorem is referenced by: eqfunresadj 7303 funcpropd 17817 fullpropd 17837 fthpropd 17838 dvres 25859 xpco2 49018 0funcg 49246 0funcALT 49249 functermc2 49670 lmddu 49828 cmddu 49829 |
| Copyright terms: Public domain | W3C validator |