| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrrdiv | Structured version Visualization version GIF version | ||
| Description: Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010.) |
| Ref | Expression |
|---|---|
| eqbrrdiv.1 | ⊢ Rel 𝐴 |
| eqbrrdiv.2 | ⊢ Rel 𝐵 |
| eqbrrdiv.3 | ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) |
| Ref | Expression |
|---|---|
| eqbrrdiv | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrrdiv.1 | . 2 ⊢ Rel 𝐴 | |
| 2 | eqbrrdiv.2 | . 2 ⊢ Rel 𝐵 | |
| 3 | eqbrrdiv.3 | . . 3 ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) | |
| 4 | df-br 5120 | . . 3 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 5 | df-br 5120 | . . 3 ⊢ (𝑥𝐵𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
| 6 | 3, 4, 5 | 3bitr3g 313 | . 2 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 7 | 1, 2, 6 | eqrelrdv 5771 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 |
| This theorem is referenced by: eqfunresadj 7353 funcpropd 17915 fullpropd 17935 fthpropd 17936 dvres 25864 0funcg 49050 0funcALT 49053 functermc2 49394 |
| Copyright terms: Public domain | W3C validator |