![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqbrrdiv | Structured version Visualization version GIF version |
Description: Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010.) |
Ref | Expression |
---|---|
eqbrrdiv.1 | ⊢ Rel 𝐴 |
eqbrrdiv.2 | ⊢ Rel 𝐵 |
eqbrrdiv.3 | ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) |
Ref | Expression |
---|---|
eqbrrdiv | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrrdiv.1 | . 2 ⊢ Rel 𝐴 | |
2 | eqbrrdiv.2 | . 2 ⊢ Rel 𝐵 | |
3 | eqbrrdiv.3 | . . 3 ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) | |
4 | df-br 5142 | . . 3 ⊢ (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴) | |
5 | df-br 5142 | . . 3 ⊢ (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵) | |
6 | 3, 4, 5 | 3bitr3g 313 | . 2 ⊢ (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
7 | 1, 2, 6 | eqrelrdv 5785 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ⟨cop 4629 class class class wbr 5141 Rel wrel 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-v 3470 df-in 3950 df-ss 3960 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 |
This theorem is referenced by: eqfunresadj 7352 funcpropd 17859 fullpropd 17879 fthpropd 17880 dvres 25790 |
Copyright terms: Public domain | W3C validator |