MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrrdiv Structured version   Visualization version   GIF version

Theorem eqbrrdiv 5760
Description: Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Hypotheses
Ref Expression
eqbrrdiv.1 Rel 𝐴
eqbrrdiv.2 Rel 𝐵
eqbrrdiv.3 (𝜑 → (𝑥𝐴𝑦𝑥𝐵𝑦))
Assertion
Ref Expression
eqbrrdiv (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem eqbrrdiv
StepHypRef Expression
1 eqbrrdiv.1 . 2 Rel 𝐴
2 eqbrrdiv.2 . 2 Rel 𝐵
3 eqbrrdiv.3 . . 3 (𝜑 → (𝑥𝐴𝑦𝑥𝐵𝑦))
4 df-br 5111 . . 3 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
5 df-br 5111 . . 3 (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
63, 4, 53bitr3g 313 . 2 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
71, 2, 6eqrelrdv 5758 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cop 4598   class class class wbr 5110  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-ss 3934  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648
This theorem is referenced by:  eqfunresadj  7338  funcpropd  17871  fullpropd  17891  fthpropd  17892  dvres  25819  xpco2  48849  0funcg  49078  0funcALT  49081  functermc2  49502  lmddu  49660  cmddu  49661
  Copyright terms: Public domain W3C validator