MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrelriv Structured version   Visualization version   GIF version

Theorem eqrelriv 5688
Description: Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012.)
Hypothesis
Ref Expression
eqrelriv.1 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
Assertion
Ref Expression
eqrelriv ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem eqrelriv
StepHypRef Expression
1 eqrelriv.1 . . 3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
21gen2 1800 . 2 𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
3 eqrel 5684 . 2 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
42, 3mpbiri 257 1 ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  cop 4564  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-opab 5133  df-xp 5586  df-rel 5587
This theorem is referenced by:  eqrelriiv  5689  dfrel2  6081  coi1  6155  cnviin  6178
  Copyright terms: Public domain W3C validator