| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqrelriv | Structured version Visualization version GIF version | ||
| Description: Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012.) |
| Ref | Expression |
|---|---|
| eqrelriv.1 | ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqrelriv | ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrelriv.1 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
| 2 | 1 | gen2 1797 | . 2 ⊢ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
| 3 | eqrel 5728 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2113 〈cop 4581 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-opab 5156 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: eqrelriiv 5734 dfrel2 6141 coi1 6215 cnviin 6238 iinxp 48956 |
| Copyright terms: Public domain | W3C validator |