| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrel2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6091 | . . 3 ⊢ Rel ◡◡𝑅 | |
| 2 | vex 3463 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3463 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opelcnv 5861 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
| 5 | 3, 2 | opelcnv 5861 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 7 | 6 | eqrelriv 5768 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
| 8 | 1, 7 | mpan 690 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
| 9 | releq 5755 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
| 10 | 1, 9 | mpbii 233 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
| 11 | 8, 10 | impbii 209 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 〈cop 4607 ◡ccnv 5653 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 |
| This theorem is referenced by: dfrel4v 6179 cnvcnv 6181 cnveqb 6185 dfrel3 6187 cnvcnvres 6194 cnvsng 6212 cores2 6248 co01 6250 coi2 6252 relcnvtrg 6255 funcnvres2 6616 f1cnvcnv 6783 f1ocnv 6830 f1ocnvb 6831 f1ococnv1 6847 fimacnvinrn 7061 isores1 7327 relcnvexb 7922 cnvf1o 8110 fnwelem 8130 tposf12 8250 ssenen 9165 f1oenfirn 9194 f1domfi 9195 cantnffval2 9709 fsumcnv 15789 fprodcnv 15999 structcnvcnv 17172 imasless 17554 oppcinv 17793 cnvps 18588 cnvpsb 18589 cnvtsr 18598 gimcnv 19250 rngimcnv 20416 lmimcnv 21025 hmeocnv 23700 hmeocnvb 23712 cmphaushmeo 23738 ustexsym 24154 pi1xfrcnv 25008 dvlog 26612 efopnlem2 26618 gtiso 32678 cycpmconjvlem 33152 cycpmconjs 33167 f1ocan2fv 37751 relcnveq3 38339 relcnveq2 38341 brcnvrabga 38360 dfrel5 38364 elrelscnveq3 38509 elrelscnveq2 38511 ltrncnvnid 40146 rimcnv 42540 relintab 43607 cnvssb 43610 relnonrel 43611 cononrel1 43618 cononrel2 43619 clrellem 43646 clcnvlem 43647 relexpaddss 43742 3f1oss1 47104 3f1oss2 47105 tposideq 48863 |
| Copyright terms: Public domain | W3C validator |