| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrel2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6059 | . . 3 ⊢ Rel ◡◡𝑅 | |
| 2 | vex 3442 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3442 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opelcnv 5828 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
| 5 | 3, 2 | opelcnv 5828 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 7 | 6 | eqrelriv 5736 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
| 8 | 1, 7 | mpan 690 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
| 9 | releq 5724 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
| 10 | 1, 9 | mpbii 233 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
| 11 | 8, 10 | impbii 209 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4585 ◡ccnv 5622 Rel wrel 5628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 |
| This theorem is referenced by: dfrel4v 6143 cnvcnv 6145 cnveqb 6149 dfrel3 6151 cnvcnvres 6158 cnvsng 6176 cores2 6212 co01 6214 coi2 6216 relcnvtrg 6219 funcnvres2 6566 f1cnvcnv 6733 f1ocnv 6780 f1ocnvb 6781 f1ococnv1 6797 fimacnvinrn 7009 isores1 7275 relcnvexb 7866 cnvf1o 8051 fnwelem 8071 tposf12 8191 ssenen 9075 f1oenfirn 9104 f1domfi 9105 cantnffval2 9610 fsumcnv 15698 fprodcnv 15908 structcnvcnv 17082 imasless 17462 oppcinv 17705 cnvps 18502 cnvpsb 18503 cnvtsr 18512 gimcnv 19164 rngimcnv 20359 lmimcnv 20989 hmeocnv 23665 hmeocnvb 23677 cmphaushmeo 23703 ustexsym 24119 pi1xfrcnv 24973 dvlog 26576 efopnlem2 26582 gtiso 32657 cycpmconjvlem 33096 cycpmconjs 33111 f1ocan2fv 37706 relcnveq3 38294 relcnveq2 38296 brcnvrabga 38309 dfrel5 38313 elrelscnveq3 38467 elrelscnveq2 38469 ltrncnvnid 40106 rimcnv 42490 relintab 43556 cnvssb 43559 relnonrel 43560 cononrel1 43567 cononrel2 43568 clrellem 43595 clcnvlem 43596 relexpaddss 43691 3f1oss1 47060 3f1oss2 47061 tposideq 48873 |
| Copyright terms: Public domain | W3C validator |