MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrel2 Structured version   Visualization version   GIF version

Theorem dfrel2 6162
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dfrel2 (Rel 𝑅𝑅 = 𝑅)

Proof of Theorem dfrel2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6075 . . 3 Rel 𝑅
2 vex 3451 . . . . . 6 𝑥 ∈ V
3 vex 3451 . . . . . 6 𝑦 ∈ V
42, 3opelcnv 5845 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
53, 2opelcnv 5845 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
64, 5bitri 275 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
76eqrelriv 5752 . . 3 ((Rel 𝑅 ∧ Rel 𝑅) → 𝑅 = 𝑅)
81, 7mpan 690 . 2 (Rel 𝑅𝑅 = 𝑅)
9 releq 5739 . . 3 (𝑅 = 𝑅 → (Rel 𝑅 ↔ Rel 𝑅))
101, 9mpbii 233 . 2 (𝑅 = 𝑅 → Rel 𝑅)
118, 10impbii 209 1 (Rel 𝑅𝑅 = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  cop 4595  ccnv 5637  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646
This theorem is referenced by:  dfrel4v  6163  cnvcnv  6165  cnveqb  6169  dfrel3  6171  cnvcnvres  6178  cnvsng  6196  cores2  6232  co01  6234  coi2  6236  relcnvtrg  6239  funcnvres2  6596  f1cnvcnv  6765  f1ocnv  6812  f1ocnvb  6813  f1ococnv1  6829  fimacnvinrn  7043  isores1  7309  relcnvexb  7902  cnvf1o  8090  fnwelem  8110  tposf12  8230  ssenen  9115  f1oenfirn  9144  f1domfi  9145  cantnffval2  9648  fsumcnv  15739  fprodcnv  15949  structcnvcnv  17123  imasless  17503  oppcinv  17742  cnvps  18537  cnvpsb  18538  cnvtsr  18547  gimcnv  19199  rngimcnv  20365  lmimcnv  20974  hmeocnv  23649  hmeocnvb  23661  cmphaushmeo  23687  ustexsym  24103  pi1xfrcnv  24957  dvlog  26560  efopnlem2  26566  gtiso  32624  cycpmconjvlem  33098  cycpmconjs  33113  f1ocan2fv  37721  relcnveq3  38309  relcnveq2  38311  brcnvrabga  38324  dfrel5  38328  elrelscnveq3  38482  elrelscnveq2  38484  ltrncnvnid  40121  rimcnv  42505  relintab  43572  cnvssb  43575  relnonrel  43576  cononrel1  43583  cononrel2  43584  clrellem  43611  clcnvlem  43612  relexpaddss  43707  3f1oss1  47076  3f1oss2  47077  tposideq  48876
  Copyright terms: Public domain W3C validator