![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrel2 | Structured version Visualization version GIF version |
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6134 | . . 3 ⊢ Rel ◡◡𝑅 | |
2 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3492 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opelcnv 5906 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
5 | 3, 2 | opelcnv 5906 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
6 | 4, 5 | bitri 275 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
7 | 6 | eqrelriv 5813 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
8 | 1, 7 | mpan 689 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
9 | releq 5800 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
10 | 1, 9 | mpbii 233 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
11 | 8, 10 | impbii 209 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 〈cop 4654 ◡ccnv 5699 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: dfrel4v 6221 cnvcnv 6223 cnveqb 6227 dfrel3 6229 cnvcnvres 6236 cnvsng 6254 cores2 6290 co01 6292 coi2 6294 relcnvtrg 6297 funcnvres2 6658 f1cnvcnv 6826 f1ocnv 6874 f1ocnvb 6875 f1ococnv1 6891 fimacnvinrn 7105 isores1 7370 relcnvexb 7966 cnvf1o 8152 fnwelem 8172 tposf12 8292 ssenen 9217 f1oenfirn 9246 f1domfi 9247 cantnffval2 9764 fsumcnv 15821 fprodcnv 16031 structcnvcnv 17200 imasless 17600 oppcinv 17841 cnvps 18648 cnvpsb 18649 cnvtsr 18658 gimcnv 19307 rngimcnv 20482 lmimcnv 21089 hmeocnv 23791 hmeocnvb 23803 cmphaushmeo 23829 ustexsym 24245 pi1xfrcnv 25109 dvlog 26711 efopnlem2 26717 gtiso 32712 cycpmconjvlem 33134 cycpmconjs 33149 f1ocan2fv 37687 relcnveq3 38277 relcnveq2 38279 brcnvrabga 38298 dfrel5 38302 elrelscnveq3 38447 elrelscnveq2 38449 ltrncnvnid 40084 rimcnv 42472 relintab 43545 cnvssb 43548 relnonrel 43549 cononrel1 43556 cononrel2 43557 clrellem 43584 clcnvlem 43585 relexpaddss 43680 3f1oss1 46990 3f1oss2 46991 |
Copyright terms: Public domain | W3C validator |