| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrel2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6053 | . . 3 ⊢ Rel ◡◡𝑅 | |
| 2 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3440 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opelcnv 5821 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
| 5 | 3, 2 | opelcnv 5821 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 7 | 6 | eqrelriv 5729 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
| 8 | 1, 7 | mpan 690 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
| 9 | releq 5717 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
| 10 | 1, 9 | mpbii 233 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
| 11 | 8, 10 | impbii 209 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 〈cop 4582 ◡ccnv 5615 Rel wrel 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 |
| This theorem is referenced by: dfrel4v 6137 cnvcnv 6139 cnveqb 6143 dfrel3 6145 cnvcnvres 6152 cnvsng 6170 cores2 6207 co01 6209 coi2 6211 relcnvtrg 6214 funcnvres2 6561 f1cnvcnv 6728 f1ocnv 6775 f1ocnvb 6776 f1ococnv1 6792 fimacnvinrn 7004 isores1 7268 relcnvexb 7856 cnvf1o 8041 fnwelem 8061 tposf12 8181 ssenen 9064 f1oenfirn 9089 f1domfi 9090 cantnffval2 9585 fsumcnv 15680 fprodcnv 15890 structcnvcnv 17064 imasless 17444 oppcinv 17687 cnvps 18484 cnvpsb 18485 cnvtsr 18494 gimcnv 19180 rngimcnv 20375 lmimcnv 21002 hmeocnv 23678 hmeocnvb 23690 cmphaushmeo 23716 ustexsym 24132 pi1xfrcnv 24985 dvlog 26588 efopnlem2 26594 gtiso 32680 cycpmconjvlem 33108 cycpmconjs 33123 f1ocan2fv 37773 relcnveq3 38361 relcnveq2 38363 brcnvrabga 38376 dfrel5 38380 elrelscnveq3 38534 elrelscnveq2 38536 ltrncnvnid 40172 rimcnv 42556 relintab 43622 cnvssb 43625 relnonrel 43626 cononrel1 43633 cononrel2 43634 clrellem 43661 clcnvlem 43662 relexpaddss 43757 3f1oss1 47112 3f1oss2 47113 tposideq 48925 |
| Copyright terms: Public domain | W3C validator |