![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrel2 | Structured version Visualization version GIF version |
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6125 | . . 3 ⊢ Rel ◡◡𝑅 | |
2 | vex 3482 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3482 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opelcnv 5895 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
5 | 3, 2 | opelcnv 5895 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
6 | 4, 5 | bitri 275 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
7 | 6 | eqrelriv 5802 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
8 | 1, 7 | mpan 690 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
9 | releq 5789 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
10 | 1, 9 | mpbii 233 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
11 | 8, 10 | impbii 209 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 〈cop 4637 ◡ccnv 5688 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 |
This theorem is referenced by: dfrel4v 6212 cnvcnv 6214 cnveqb 6218 dfrel3 6220 cnvcnvres 6227 cnvsng 6245 cores2 6281 co01 6283 coi2 6285 relcnvtrg 6288 funcnvres2 6648 f1cnvcnv 6814 f1ocnv 6861 f1ocnvb 6862 f1ococnv1 6878 fimacnvinrn 7091 isores1 7354 relcnvexb 7949 cnvf1o 8135 fnwelem 8155 tposf12 8275 ssenen 9190 f1oenfirn 9218 f1domfi 9219 cantnffval2 9733 fsumcnv 15806 fprodcnv 16016 structcnvcnv 17187 imasless 17587 oppcinv 17828 cnvps 18636 cnvpsb 18637 cnvtsr 18646 gimcnv 19298 rngimcnv 20473 lmimcnv 21084 hmeocnv 23786 hmeocnvb 23798 cmphaushmeo 23824 ustexsym 24240 pi1xfrcnv 25104 dvlog 26708 efopnlem2 26714 gtiso 32716 cycpmconjvlem 33144 cycpmconjs 33159 f1ocan2fv 37714 relcnveq3 38303 relcnveq2 38305 brcnvrabga 38324 dfrel5 38328 elrelscnveq3 38473 elrelscnveq2 38475 ltrncnvnid 40110 rimcnv 42504 relintab 43573 cnvssb 43576 relnonrel 43577 cononrel1 43584 cononrel2 43585 clrellem 43612 clcnvlem 43613 relexpaddss 43708 3f1oss1 47025 3f1oss2 47026 |
Copyright terms: Public domain | W3C validator |