Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfrel2 | Structured version Visualization version GIF version |
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6001 | . . 3 ⊢ Rel ◡◡𝑅 | |
2 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3426 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opelcnv 5779 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
5 | 3, 2 | opelcnv 5779 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
6 | 4, 5 | bitri 274 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
7 | 6 | eqrelriv 5688 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
8 | 1, 7 | mpan 686 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
9 | releq 5677 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
10 | 1, 9 | mpbii 232 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
11 | 8, 10 | impbii 208 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 〈cop 4564 ◡ccnv 5579 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 |
This theorem is referenced by: dfrel4v 6082 cnvcnv 6084 cnveqb 6088 dfrel3 6090 cnvcnvres 6097 cnvsng 6115 cores2 6152 co01 6154 coi2 6156 relcnvtrg 6159 funcnvres2 6498 f1cnvcnv 6664 f1ocnv 6712 f1ocnvb 6713 f1ococnv1 6728 fimacnvinrn 6931 isores1 7185 relcnvexb 7747 cnvf1o 7922 fnwelem 7943 tposf12 8038 ssenen 8887 f1oenfirn 8927 f1domfi 8928 cantnffval2 9383 fsumcnv 15413 fprodcnv 15621 structcnvcnv 16782 imasless 17168 oppcinv 17409 cnvps 18211 cnvpsb 18212 cnvtsr 18221 gimcnv 18798 lmimcnv 20244 hmeocnv 22821 hmeocnvb 22833 cmphaushmeo 22859 ustexsym 23275 pi1xfrcnv 24126 dvlog 25711 efopnlem2 25717 gtiso 30935 cycpmconjvlem 31310 cycpmconjs 31325 f1ocan2fv 35812 relcnveq3 36383 relcnveq2 36385 brcnvrabga 36404 dfrel5 36408 elrelscnveq3 36536 elrelscnveq2 36538 ltrncnvnid 38068 relintab 41080 cnvssb 41083 relnonrel 41084 cononrel1 41091 cononrel2 41092 clrellem 41119 clcnvlem 41120 relexpaddss 41215 |
Copyright terms: Public domain | W3C validator |