| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrel2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6057 | . . 3 ⊢ Rel ◡◡𝑅 | |
| 2 | vex 3441 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3441 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opelcnv 5825 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
| 5 | 3, 2 | opelcnv 5825 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 7 | 6 | eqrelriv 5733 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
| 8 | 1, 7 | mpan 690 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
| 9 | releq 5721 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
| 10 | 1, 9 | mpbii 233 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
| 11 | 8, 10 | impbii 209 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 〈cop 4581 ◡ccnv 5618 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 |
| This theorem is referenced by: dfrel4v 6142 cnvcnv 6144 cnveqb 6148 dfrel3 6150 cnvcnvres 6157 cnvsng 6175 cores2 6212 co01 6214 coi2 6216 relcnvtrg 6219 funcnvres2 6566 f1cnvcnv 6733 f1ocnv 6780 f1ocnvb 6781 f1ococnv1 6797 fimacnvinrn 7010 isores1 7274 relcnvexb 7862 cnvf1o 8047 fnwelem 8067 tposf12 8187 ssenen 9071 f1oenfirn 9096 f1domfi 9097 cantnffval2 9592 fsumcnv 15682 fprodcnv 15892 structcnvcnv 17066 imasless 17446 oppcinv 17689 cnvps 18486 cnvpsb 18487 cnvtsr 18496 gimcnv 19181 rngimcnv 20376 lmimcnv 21003 hmeocnv 23678 hmeocnvb 23690 cmphaushmeo 23716 ustexsym 24132 pi1xfrcnv 24985 dvlog 26588 efopnlem2 26594 gtiso 32686 cycpmconjvlem 33117 cycpmconjs 33132 f1ocan2fv 37788 relcnveq3 38380 relcnveq2 38382 brcnvrabga 38395 dfrel5 38399 elrelscnveq3 38660 elrelscnveq2 38662 ltrncnvnid 40247 rimcnv 42636 relintab 43701 cnvssb 43704 relnonrel 43705 cononrel1 43712 cononrel2 43713 clrellem 43740 clcnvlem 43741 relexpaddss 43836 3f1oss1 47200 3f1oss2 47201 tposideq 49013 |
| Copyright terms: Public domain | W3C validator |