| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrel2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6075 | . . 3 ⊢ Rel ◡◡𝑅 | |
| 2 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3451 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opelcnv 5845 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
| 5 | 3, 2 | opelcnv 5845 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 7 | 6 | eqrelriv 5752 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
| 8 | 1, 7 | mpan 690 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
| 9 | releq 5739 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
| 10 | 1, 9 | mpbii 233 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
| 11 | 8, 10 | impbii 209 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4595 ◡ccnv 5637 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 |
| This theorem is referenced by: dfrel4v 6163 cnvcnv 6165 cnveqb 6169 dfrel3 6171 cnvcnvres 6178 cnvsng 6196 cores2 6232 co01 6234 coi2 6236 relcnvtrg 6239 funcnvres2 6596 f1cnvcnv 6765 f1ocnv 6812 f1ocnvb 6813 f1ococnv1 6829 fimacnvinrn 7043 isores1 7309 relcnvexb 7902 cnvf1o 8090 fnwelem 8110 tposf12 8230 ssenen 9115 f1oenfirn 9144 f1domfi 9145 cantnffval2 9648 fsumcnv 15739 fprodcnv 15949 structcnvcnv 17123 imasless 17503 oppcinv 17742 cnvps 18537 cnvpsb 18538 cnvtsr 18547 gimcnv 19199 rngimcnv 20365 lmimcnv 20974 hmeocnv 23649 hmeocnvb 23661 cmphaushmeo 23687 ustexsym 24103 pi1xfrcnv 24957 dvlog 26560 efopnlem2 26566 gtiso 32624 cycpmconjvlem 33098 cycpmconjs 33113 f1ocan2fv 37721 relcnveq3 38309 relcnveq2 38311 brcnvrabga 38324 dfrel5 38328 elrelscnveq3 38482 elrelscnveq2 38484 ltrncnvnid 40121 rimcnv 42505 relintab 43572 cnvssb 43575 relnonrel 43576 cononrel1 43583 cononrel2 43584 clrellem 43611 clcnvlem 43612 relexpaddss 43707 3f1oss1 47076 3f1oss2 47077 tposideq 48876 |
| Copyright terms: Public domain | W3C validator |