| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrel2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6122 | . . 3 ⊢ Rel ◡◡𝑅 | |
| 2 | vex 3484 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3484 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opelcnv 5892 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
| 5 | 3, 2 | opelcnv 5892 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 7 | 6 | eqrelriv 5799 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
| 8 | 1, 7 | mpan 690 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
| 9 | releq 5786 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
| 10 | 1, 9 | mpbii 233 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
| 11 | 8, 10 | impbii 209 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 〈cop 4632 ◡ccnv 5684 Rel wrel 5690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 |
| This theorem is referenced by: dfrel4v 6210 cnvcnv 6212 cnveqb 6216 dfrel3 6218 cnvcnvres 6225 cnvsng 6243 cores2 6279 co01 6281 coi2 6283 relcnvtrg 6286 funcnvres2 6646 f1cnvcnv 6813 f1ocnv 6860 f1ocnvb 6861 f1ococnv1 6877 fimacnvinrn 7091 isores1 7354 relcnvexb 7948 cnvf1o 8136 fnwelem 8156 tposf12 8276 ssenen 9191 f1oenfirn 9220 f1domfi 9221 cantnffval2 9735 fsumcnv 15809 fprodcnv 16019 structcnvcnv 17190 imasless 17585 oppcinv 17824 cnvps 18623 cnvpsb 18624 cnvtsr 18633 gimcnv 19285 rngimcnv 20456 lmimcnv 21066 hmeocnv 23770 hmeocnvb 23782 cmphaushmeo 23808 ustexsym 24224 pi1xfrcnv 25090 dvlog 26693 efopnlem2 26699 gtiso 32710 cycpmconjvlem 33161 cycpmconjs 33176 f1ocan2fv 37734 relcnveq3 38322 relcnveq2 38324 brcnvrabga 38343 dfrel5 38347 elrelscnveq3 38492 elrelscnveq2 38494 ltrncnvnid 40129 rimcnv 42527 relintab 43596 cnvssb 43599 relnonrel 43600 cononrel1 43607 cononrel2 43608 clrellem 43635 clcnvlem 43636 relexpaddss 43731 3f1oss1 47087 3f1oss2 47088 tposideq 48788 |
| Copyright terms: Public domain | W3C validator |