![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrel2 | Structured version Visualization version GIF version |
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5743 | . . 3 ⊢ Rel ◡◡𝑅 | |
2 | vex 3416 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3416 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opelcnv 5535 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
5 | 3, 2 | opelcnv 5535 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
6 | 4, 5 | bitri 267 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
7 | 6 | eqrelriv 5446 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
8 | 1, 7 | mpan 683 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
9 | releq 5435 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
10 | 1, 9 | mpbii 225 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
11 | 8, 10 | impbii 201 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1658 ∈ wcel 2166 〈cop 4402 ◡ccnv 5340 Rel wrel 5346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pr 5126 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-rab 3125 df-v 3415 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-sn 4397 df-pr 4399 df-op 4403 df-br 4873 df-opab 4935 df-xp 5347 df-rel 5348 df-cnv 5349 |
This theorem is referenced by: dfrel4v 5824 cnvcnv 5826 cnveqb 5829 dfrel3 5831 cnvcnvres 5838 cnvsng 5856 cores2 5888 co01 5890 coi2 5892 relcnvtr 5895 funcnvres2 6201 f1cnvcnv 6346 f1ocnv 6389 f1ocnvb 6390 f1ococnv1 6405 fimacnvinrn 6596 isores1 6838 relcnvexb 7375 cnvf1o 7539 fnwelem 7555 tposf12 7641 ssenen 8402 cantnffval2 8868 fsumcnv 14878 fprodcnv 15085 structcnvcnv 16235 imasless 16552 oppcinv 16791 cnvps 17564 cnvpsb 17565 cnvtsr 17574 gimcnv 18059 lmimcnv 19425 hmeocnv 21935 hmeocnvb 21947 cmphaushmeo 21973 ustexsym 22388 pi1xfrcnv 23225 dvlog 24795 efopnlem2 24801 gtiso 30025 f1ocan2fv 34064 relcnveq3 34639 relcnveq2 34641 brcnvrabga 34657 dfrel5 34661 elrelscnveq3 34788 elrelscnveq2 34790 ltrncnvnid 36201 relintab 38729 cnvssb 38732 relnonrel 38733 cononrel1 38740 cononrel2 38741 clrellem 38769 clcnvlem 38770 relexpaddss 38850 |
Copyright terms: Public domain | W3C validator |