![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrel2 | Structured version Visualization version GIF version |
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6102 | . . 3 ⊢ Rel ◡◡𝑅 | |
2 | vex 3476 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3476 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opelcnv 5880 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡◡𝑅 ↔ ⟨𝑦, 𝑥⟩ ∈ ◡𝑅) |
5 | 3, 2 | opelcnv 5880 | . . . . 5 ⊢ (⟨𝑦, 𝑥⟩ ∈ ◡𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅) |
6 | 4, 5 | bitri 274 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡◡𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅) |
7 | 6 | eqrelriv 5788 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
8 | 1, 7 | mpan 686 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
9 | releq 5775 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
10 | 1, 9 | mpbii 232 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
11 | 8, 10 | impbii 208 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2104 ⟨cop 4633 ◡ccnv 5674 Rel wrel 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 |
This theorem is referenced by: dfrel4v 6188 cnvcnv 6190 cnveqb 6194 dfrel3 6196 cnvcnvres 6203 cnvsng 6221 cores2 6257 co01 6259 coi2 6261 relcnvtrg 6264 funcnvres2 6627 f1cnvcnv 6796 f1ocnv 6844 f1ocnvb 6845 f1ococnv1 6861 fimacnvinrn 7072 isores1 7333 relcnvexb 7919 cnvf1o 8099 fnwelem 8119 tposf12 8238 ssenen 9153 f1oenfirn 9185 f1domfi 9186 cantnffval2 9692 fsumcnv 15723 fprodcnv 15931 structcnvcnv 17090 imasless 17490 oppcinv 17731 cnvps 18535 cnvpsb 18536 cnvtsr 18545 gimcnv 19181 rngimcnv 20347 lmimcnv 20822 hmeocnv 23486 hmeocnvb 23498 cmphaushmeo 23524 ustexsym 23940 pi1xfrcnv 24804 dvlog 26395 efopnlem2 26401 gtiso 32189 cycpmconjvlem 32570 cycpmconjs 32585 f1ocan2fv 36898 relcnveq3 37493 relcnveq2 37495 brcnvrabga 37514 dfrel5 37518 elrelscnveq3 37664 elrelscnveq2 37666 ltrncnvnid 39301 rimcnv 41396 relintab 42636 cnvssb 42639 relnonrel 42640 cononrel1 42647 cononrel2 42648 clrellem 42675 clcnvlem 42676 relexpaddss 42771 |
Copyright terms: Public domain | W3C validator |