| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrel2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6078 | . . 3 ⊢ Rel ◡◡𝑅 | |
| 2 | vex 3454 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3454 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opelcnv 5848 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
| 5 | 3, 2 | opelcnv 5848 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 7 | 6 | eqrelriv 5755 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
| 8 | 1, 7 | mpan 690 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
| 9 | releq 5742 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
| 10 | 1, 9 | mpbii 233 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
| 11 | 8, 10 | impbii 209 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4598 ◡ccnv 5640 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 |
| This theorem is referenced by: dfrel4v 6166 cnvcnv 6168 cnveqb 6172 dfrel3 6174 cnvcnvres 6181 cnvsng 6199 cores2 6235 co01 6237 coi2 6239 relcnvtrg 6242 funcnvres2 6599 f1cnvcnv 6768 f1ocnv 6815 f1ocnvb 6816 f1ococnv1 6832 fimacnvinrn 7046 isores1 7312 relcnvexb 7905 cnvf1o 8093 fnwelem 8113 tposf12 8233 ssenen 9121 f1oenfirn 9150 f1domfi 9151 cantnffval2 9655 fsumcnv 15746 fprodcnv 15956 structcnvcnv 17130 imasless 17510 oppcinv 17749 cnvps 18544 cnvpsb 18545 cnvtsr 18554 gimcnv 19206 rngimcnv 20372 lmimcnv 20981 hmeocnv 23656 hmeocnvb 23668 cmphaushmeo 23694 ustexsym 24110 pi1xfrcnv 24964 dvlog 26567 efopnlem2 26573 gtiso 32631 cycpmconjvlem 33105 cycpmconjs 33120 f1ocan2fv 37728 relcnveq3 38316 relcnveq2 38318 brcnvrabga 38331 dfrel5 38335 elrelscnveq3 38489 elrelscnveq2 38491 ltrncnvnid 40128 rimcnv 42512 relintab 43579 cnvssb 43582 relnonrel 43583 cononrel1 43590 cononrel2 43591 clrellem 43618 clcnvlem 43619 relexpaddss 43714 3f1oss1 47080 3f1oss2 47081 tposideq 48880 |
| Copyright terms: Public domain | W3C validator |