MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrelriiv Structured version   Visualization version   GIF version

Theorem eqrelriiv 5729
Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.)
Hypotheses
Ref Expression
eqreliiv.1 Rel 𝐴
eqreliiv.2 Rel 𝐵
eqreliiv.3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
Assertion
Ref Expression
eqrelriiv 𝐴 = 𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem eqrelriiv
StepHypRef Expression
1 eqreliiv.1 . 2 Rel 𝐴
2 eqreliiv.2 . 2 Rel 𝐵
3 eqreliiv.3 . . 3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
43eqrelriv 5728 . 2 ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵)
51, 2, 4mp2an 692 1 𝐴 = 𝐵
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  cop 4579  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-opab 5152  df-xp 5620  df-rel 5621
This theorem is referenced by:  eqbrriv  5730  inopab  5768  difopab  5769  inxp  5770  dfres2  5989  restidsing  6001  cnvopab  6083  cnvopabOLD  6084  cnvdif  6090  difxp  6111  cnvcnvsn  6166  dfco2  6192  coiun  6204  co02  6208  coass  6213  ressn  6232  ovoliunlem1  25430  h2hlm  30960  cnvco1  35803  cnvco2  35804  inxprnres  38340  cnviun  43753  coiun1  43755  coxp  48943
  Copyright terms: Public domain W3C validator