MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrelriiv Structured version   Visualization version   GIF version

Theorem eqrelriiv 5814
Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.)
Hypotheses
Ref Expression
eqreliiv.1 Rel 𝐴
eqreliiv.2 Rel 𝐵
eqreliiv.3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
Assertion
Ref Expression
eqrelriiv 𝐴 = 𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem eqrelriiv
StepHypRef Expression
1 eqreliiv.1 . 2 Rel 𝐴
2 eqreliiv.2 . 2 Rel 𝐵
3 eqreliiv.3 . . 3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
43eqrelriv 5813 . 2 ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵)
51, 2, 4mp2an 691 1 𝐴 = 𝐵
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  cop 4654  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-opab 5229  df-xp 5706  df-rel 5707
This theorem is referenced by:  eqbrriv  5815  inopab  5853  difopab  5854  difopabOLD  5855  inxp  5856  dfres2  6070  restidsing  6082  cnvopab  6169  cnvopabOLD  6170  cnvdif  6175  difxp  6195  cnvcnvsn  6250  dfco2  6276  coiun  6287  co02  6291  coass  6296  ressn  6316  ovoliunlem1  25556  h2hlm  31012  cnvco1  35721  cnvco2  35722  inxprnres  38248  cnviun  43612  coiun1  43614
  Copyright terms: Public domain W3C validator