| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqrelriiv | Structured version Visualization version GIF version | ||
| Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.) |
| Ref | Expression |
|---|---|
| eqreliiv.1 | ⊢ Rel 𝐴 |
| eqreliiv.2 | ⊢ Rel 𝐵 |
| eqreliiv.3 | ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqrelriiv | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqreliiv.1 | . 2 ⊢ Rel 𝐴 | |
| 2 | eqreliiv.2 | . 2 ⊢ Rel 𝐵 | |
| 3 | eqreliiv.3 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
| 4 | 3 | eqrelriv 5768 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵) |
| 5 | 1, 2, 4 | mp2an 692 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 〈cop 4607 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-opab 5182 df-xp 5660 df-rel 5661 |
| This theorem is referenced by: eqbrriv 5770 inopab 5808 difopab 5809 difopabOLD 5810 inxp 5811 dfres2 6028 restidsing 6040 cnvopab 6126 cnvopabOLD 6127 cnvdif 6132 difxp 6153 cnvcnvsn 6208 dfco2 6234 coiun 6245 co02 6249 coass 6254 ressn 6274 ovoliunlem1 25455 h2hlm 30961 cnvco1 35776 cnvco2 35777 inxprnres 38310 cnviun 43674 coiun1 43676 coxp 48811 |
| Copyright terms: Public domain | W3C validator |