MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrelriiv Structured version   Visualization version   GIF version

Theorem eqrelriiv 5769
Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.)
Hypotheses
Ref Expression
eqreliiv.1 Rel 𝐴
eqreliiv.2 Rel 𝐵
eqreliiv.3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
Assertion
Ref Expression
eqrelriiv 𝐴 = 𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem eqrelriiv
StepHypRef Expression
1 eqreliiv.1 . 2 Rel 𝐴
2 eqreliiv.2 . 2 Rel 𝐵
3 eqreliiv.3 . . 3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
43eqrelriv 5768 . 2 ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵)
51, 2, 4mp2an 692 1 𝐴 = 𝐵
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2108  cop 4607  Rel wrel 5659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-ss 3943  df-opab 5182  df-xp 5660  df-rel 5661
This theorem is referenced by:  eqbrriv  5770  inopab  5808  difopab  5809  difopabOLD  5810  inxp  5811  dfres2  6028  restidsing  6040  cnvopab  6126  cnvopabOLD  6127  cnvdif  6132  difxp  6153  cnvcnvsn  6208  dfco2  6234  coiun  6245  co02  6249  coass  6254  ressn  6274  ovoliunlem1  25455  h2hlm  30961  cnvco1  35776  cnvco2  35777  inxprnres  38310  cnviun  43674  coiun1  43676  coxp  48811
  Copyright terms: Public domain W3C validator