| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqrelriiv | Structured version Visualization version GIF version | ||
| Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.) |
| Ref | Expression |
|---|---|
| eqreliiv.1 | ⊢ Rel 𝐴 |
| eqreliiv.2 | ⊢ Rel 𝐵 |
| eqreliiv.3 | ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqrelriiv | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqreliiv.1 | . 2 ⊢ Rel 𝐴 | |
| 2 | eqreliiv.2 | . 2 ⊢ Rel 𝐵 | |
| 3 | eqreliiv.3 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
| 4 | 3 | eqrelriv 5732 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵) |
| 5 | 1, 2, 4 | mp2an 692 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4583 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-opab 5155 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: eqbrriv 5734 inopab 5772 difopab 5773 inxp 5774 dfres2 5992 restidsing 6004 cnvopab 6086 cnvopabOLD 6087 cnvdif 6092 difxp 6113 cnvcnvsn 6168 dfco2 6194 coiun 6205 co02 6209 coass 6214 ressn 6233 ovoliunlem1 25401 h2hlm 30924 cnvco1 35736 cnvco2 35737 inxprnres 38270 cnviun 43627 coiun1 43629 coxp 48821 |
| Copyright terms: Public domain | W3C validator |