Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqrelriiv | Structured version Visualization version GIF version |
Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.) |
Ref | Expression |
---|---|
eqreliiv.1 | ⊢ Rel 𝐴 |
eqreliiv.2 | ⊢ Rel 𝐵 |
eqreliiv.3 | ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
Ref | Expression |
---|---|
eqrelriiv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqreliiv.1 | . 2 ⊢ Rel 𝐴 | |
2 | eqreliiv.2 | . 2 ⊢ Rel 𝐵 | |
3 | eqreliiv.3 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
4 | 3 | eqrelriv 5636 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵) |
5 | 1, 2, 4 | mp2an 691 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1538 ∈ wcel 2111 〈cop 4531 Rel wrel 5533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3867 df-ss 3877 df-opab 5099 df-xp 5534 df-rel 5535 |
This theorem is referenced by: eqbrriv 5638 inopab 5676 difopab 5677 dfres2 5886 restidsing 5899 cnvopab 5974 cnvdif 5979 difxp 5998 cnvcnvsn 6053 dfco2 6080 coiun 6091 co02 6095 coass 6100 ressn 6119 ovoliunlem1 24215 h2hlm 28875 cnvco1 33254 cnvco2 33255 inxprnres 36023 cnviun 40759 coiun1 40761 |
Copyright terms: Public domain | W3C validator |