![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqrelriiv | Structured version Visualization version GIF version |
Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.) |
Ref | Expression |
---|---|
eqreliiv.1 | ⊢ Rel 𝐴 |
eqreliiv.2 | ⊢ Rel 𝐵 |
eqreliiv.3 | ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
Ref | Expression |
---|---|
eqrelriiv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqreliiv.1 | . 2 ⊢ Rel 𝐴 | |
2 | eqreliiv.2 | . 2 ⊢ Rel 𝐵 | |
3 | eqreliiv.3 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
4 | 3 | eqrelriv 5813 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵) |
5 | 1, 2, 4 | mp2an 691 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 〈cop 4654 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: eqbrriv 5815 inopab 5853 difopab 5854 difopabOLD 5855 inxp 5856 dfres2 6070 restidsing 6082 cnvopab 6169 cnvopabOLD 6170 cnvdif 6175 difxp 6195 cnvcnvsn 6250 dfco2 6276 coiun 6287 co02 6291 coass 6296 ressn 6316 ovoliunlem1 25556 h2hlm 31012 cnvco1 35721 cnvco2 35722 inxprnres 38248 cnviun 43612 coiun1 43614 |
Copyright terms: Public domain | W3C validator |