Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqrelriiv | Structured version Visualization version GIF version |
Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.) |
Ref | Expression |
---|---|
eqreliiv.1 | ⊢ Rel 𝐴 |
eqreliiv.2 | ⊢ Rel 𝐵 |
eqreliiv.3 | ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
Ref | Expression |
---|---|
eqrelriiv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqreliiv.1 | . 2 ⊢ Rel 𝐴 | |
2 | eqreliiv.2 | . 2 ⊢ Rel 𝐵 | |
3 | eqreliiv.3 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
4 | 3 | eqrelriv 5699 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵) |
5 | 1, 2, 4 | mp2an 689 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 〈cop 4567 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: eqbrriv 5701 inopab 5739 difopab 5740 dfres2 5949 restidsing 5962 cnvopab 6042 cnvdif 6047 difxp 6067 cnvcnvsn 6122 dfco2 6149 coiun 6160 co02 6164 coass 6169 ressn 6188 ovoliunlem1 24666 h2hlm 29342 cnvco1 33726 cnvco2 33727 inxprnres 36427 cnviun 41258 coiun1 41260 |
Copyright terms: Public domain | W3C validator |