| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqrelriiv | Structured version Visualization version GIF version | ||
| Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.) |
| Ref | Expression |
|---|---|
| eqreliiv.1 | ⊢ Rel 𝐴 |
| eqreliiv.2 | ⊢ Rel 𝐵 |
| eqreliiv.3 | ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqrelriiv | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqreliiv.1 | . 2 ⊢ Rel 𝐴 | |
| 2 | eqreliiv.2 | . 2 ⊢ Rel 𝐵 | |
| 3 | eqreliiv.3 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
| 4 | 3 | eqrelriv 5743 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵) |
| 5 | 1, 2, 4 | mp2an 692 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4591 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-opab 5165 df-xp 5637 df-rel 5638 |
| This theorem is referenced by: eqbrriv 5745 inopab 5783 difopab 5784 inxp 5785 dfres2 6001 restidsing 6013 cnvopab 6098 cnvopabOLD 6099 cnvdif 6104 difxp 6125 cnvcnvsn 6180 dfco2 6206 coiun 6217 co02 6221 coass 6226 ressn 6246 ovoliunlem1 25436 h2hlm 30959 cnvco1 35739 cnvco2 35740 inxprnres 38273 cnviun 43632 coiun1 43634 coxp 48814 |
| Copyright terms: Public domain | W3C validator |