MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coi1 Structured version   Visualization version   GIF version

Theorem coi1 6205
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi1 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)

Proof of Theorem coi1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6052 . 2 Rel (𝐴 ∘ I )
2 vex 3440 . . . . . 6 𝑥 ∈ V
3 vex 3440 . . . . . 6 𝑦 ∈ V
42, 3opelco 5806 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ I ) ↔ ∃𝑧(𝑥 I 𝑧𝑧𝐴𝑦))
5 vex 3440 . . . . . . . . . 10 𝑧 ∈ V
65ideq 5787 . . . . . . . . 9 (𝑥 I 𝑧𝑥 = 𝑧)
7 equcom 2019 . . . . . . . . 9 (𝑥 = 𝑧𝑧 = 𝑥)
86, 7bitri 275 . . . . . . . 8 (𝑥 I 𝑧𝑧 = 𝑥)
98anbi1i 624 . . . . . . 7 ((𝑥 I 𝑧𝑧𝐴𝑦) ↔ (𝑧 = 𝑥𝑧𝐴𝑦))
109exbii 1849 . . . . . 6 (∃𝑧(𝑥 I 𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑧 = 𝑥𝑧𝐴𝑦))
11 breq1 5089 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝐴𝑦𝑥𝐴𝑦))
1211equsexvw 2006 . . . . . 6 (∃𝑧(𝑧 = 𝑥𝑧𝐴𝑦) ↔ 𝑥𝐴𝑦)
1310, 12bitri 275 . . . . 5 (∃𝑧(𝑥 I 𝑧𝑧𝐴𝑦) ↔ 𝑥𝐴𝑦)
144, 13bitri 275 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ I ) ↔ 𝑥𝐴𝑦)
15 df-br 5087 . . . 4 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
1614, 15bitri 275 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ I ) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
1716eqrelriv 5724 . 2 ((Rel (𝐴 ∘ I ) ∧ Rel 𝐴) → (𝐴 ∘ I ) = 𝐴)
181, 17mpan 690 1 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  cop 4577   class class class wbr 5086   I cid 5505  ccom 5615  Rel wrel 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-co 5620
This theorem is referenced by:  coi2  6206  coires1  6207  fcoi1  6692  mvdco  19352  cocnv  37765
  Copyright terms: Public domain W3C validator