| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coi1 | Structured version Visualization version GIF version | ||
| Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| coi1 | ⊢ (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6095 | . 2 ⊢ Rel (𝐴 ∘ I ) | |
| 2 | vex 3463 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3463 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opelco 5851 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ I ) ↔ ∃𝑧(𝑥 I 𝑧 ∧ 𝑧𝐴𝑦)) |
| 5 | vex 3463 | . . . . . . . . . 10 ⊢ 𝑧 ∈ V | |
| 6 | 5 | ideq 5832 | . . . . . . . . 9 ⊢ (𝑥 I 𝑧 ↔ 𝑥 = 𝑧) |
| 7 | equcom 2017 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 ↔ 𝑧 = 𝑥) | |
| 8 | 6, 7 | bitri 275 | . . . . . . . 8 ⊢ (𝑥 I 𝑧 ↔ 𝑧 = 𝑥) |
| 9 | 8 | anbi1i 624 | . . . . . . 7 ⊢ ((𝑥 I 𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑧 = 𝑥 ∧ 𝑧𝐴𝑦)) |
| 10 | 9 | exbii 1848 | . . . . . 6 ⊢ (∃𝑧(𝑥 I 𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧𝐴𝑦)) |
| 11 | breq1 5122 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑧𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
| 12 | 11 | equsexvw 2004 | . . . . . 6 ⊢ (∃𝑧(𝑧 = 𝑥 ∧ 𝑧𝐴𝑦) ↔ 𝑥𝐴𝑦) |
| 13 | 10, 12 | bitri 275 | . . . . 5 ⊢ (∃𝑧(𝑥 I 𝑧 ∧ 𝑧𝐴𝑦) ↔ 𝑥𝐴𝑦) |
| 14 | 4, 13 | bitri 275 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ I ) ↔ 𝑥𝐴𝑦) |
| 15 | df-br 5120 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 16 | 14, 15 | bitri 275 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ I ) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
| 17 | 16 | eqrelriv 5768 | . 2 ⊢ ((Rel (𝐴 ∘ I ) ∧ Rel 𝐴) → (𝐴 ∘ I ) = 𝐴) |
| 18 | 1, 17 | mpan 690 | 1 ⊢ (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 I cid 5547 ∘ ccom 5658 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-co 5663 |
| This theorem is referenced by: coi2 6252 coires1 6253 fcoi1 6752 mvdco 19426 cocnv 37749 |
| Copyright terms: Public domain | W3C validator |