MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coi1 Structured version   Visualization version   GIF version

Theorem coi1 6155
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi1 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)

Proof of Theorem coi1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6137 . 2 Rel (𝐴 ∘ I )
2 vex 3426 . . . . . 6 𝑥 ∈ V
3 vex 3426 . . . . . 6 𝑦 ∈ V
42, 3opelco 5769 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ I ) ↔ ∃𝑧(𝑥 I 𝑧𝑧𝐴𝑦))
5 vex 3426 . . . . . . . . . 10 𝑧 ∈ V
65ideq 5750 . . . . . . . . 9 (𝑥 I 𝑧𝑥 = 𝑧)
7 equcom 2022 . . . . . . . . 9 (𝑥 = 𝑧𝑧 = 𝑥)
86, 7bitri 274 . . . . . . . 8 (𝑥 I 𝑧𝑧 = 𝑥)
98anbi1i 623 . . . . . . 7 ((𝑥 I 𝑧𝑧𝐴𝑦) ↔ (𝑧 = 𝑥𝑧𝐴𝑦))
109exbii 1851 . . . . . 6 (∃𝑧(𝑥 I 𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑧 = 𝑥𝑧𝐴𝑦))
11 breq1 5073 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝐴𝑦𝑥𝐴𝑦))
1211equsexvw 2009 . . . . . 6 (∃𝑧(𝑧 = 𝑥𝑧𝐴𝑦) ↔ 𝑥𝐴𝑦)
1310, 12bitri 274 . . . . 5 (∃𝑧(𝑥 I 𝑧𝑧𝐴𝑦) ↔ 𝑥𝐴𝑦)
144, 13bitri 274 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ I ) ↔ 𝑥𝐴𝑦)
15 df-br 5071 . . . 4 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
1614, 15bitri 274 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ I ) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
1716eqrelriv 5688 . 2 ((Rel (𝐴 ∘ I ) ∧ Rel 𝐴) → (𝐴 ∘ I ) = 𝐴)
181, 17mpan 686 1 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  cop 4564   class class class wbr 5070   I cid 5479  ccom 5584  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-co 5589
This theorem is referenced by:  coi2  6156  coires1  6157  fcoi1  6632  mvdco  18968  cocnv  35810
  Copyright terms: Public domain W3C validator