![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relssdv | Structured version Visualization version GIF version |
Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004.) |
Ref | Expression |
---|---|
relssdv.1 | ⊢ (𝜑 → Rel 𝐴) |
relssdv.2 | ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
Ref | Expression |
---|---|
relssdv | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssdv.2 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
2 | 1 | alrimivv 1927 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
3 | relssdv.1 | . . 3 ⊢ (𝜑 → Rel 𝐴) | |
4 | ssrel 5806 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) |
6 | 2, 5 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∈ wcel 2108 ⊆ wss 3976 〈cop 4654 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: relssres 6051 poirr2 6156 sofld 6218 relssdmrn 6299 relssdmrnOLD 6300 funcres2 17962 wunfunc 17965 wunfuncOLD 17966 fthres2 17999 pospo 18415 joindmss 18449 meetdmss 18463 clatl 18578 subrgdvds 20614 opsrtoslem2 22103 txcls 23633 txdis1cn 23664 txkgen 23681 qustgplem 24150 metustid 24588 metustexhalf 24590 ovoliunlem1 25556 dvres2 25967 cvmlift2lem12 35282 dib2dim 41200 dih2dimbALTN 41202 dihmeetlem1N 41247 dihglblem5apreN 41248 dihmeetlem13N 41276 dihjatcclem4 41378 |
Copyright terms: Public domain | W3C validator |