MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssdv Structured version   Visualization version   GIF version

Theorem relssdv 5751
Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004.)
Hypotheses
Ref Expression
relssdv.1 (𝜑 → Rel 𝐴)
relssdv.2 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Assertion
Ref Expression
relssdv (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem relssdv
StepHypRef Expression
1 relssdv.2 . . 3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
21alrimivv 1928 . 2 (𝜑 → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
3 relssdv.1 . . 3 (𝜑 → Rel 𝐴)
4 ssrel 5745 . . 3 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
53, 4syl 17 . 2 (𝜑 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
62, 5mpbird 257 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  wss 3914  cop 4595  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-ss 3931  df-opab 5170  df-xp 5644  df-rel 5645
This theorem is referenced by:  relssres  5993  poirr2  6097  sofld  6160  relssdmrn  6241  relssdmrnOLD  6242  funcres2  17860  wunfunc  17863  fthres2  17896  pospo  18304  joindmss  18338  meetdmss  18352  clatl  18467  subrgdvds  20495  opsrtoslem2  21963  txcls  23491  txdis1cn  23522  txkgen  23539  qustgplem  24008  metustid  24442  metustexhalf  24444  ovoliunlem1  25403  dvres2  25813  cvmlift2lem12  35301  dib2dim  41237  dih2dimbALTN  41239  dihmeetlem1N  41284  dihglblem5apreN  41285  dihmeetlem13N  41313  dihjatcclem4  41415
  Copyright terms: Public domain W3C validator