MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssdv Structured version   Visualization version   GIF version

Theorem relssdv 5742
Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004.)
Hypotheses
Ref Expression
relssdv.1 (𝜑 → Rel 𝐴)
relssdv.2 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Assertion
Ref Expression
relssdv (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem relssdv
StepHypRef Expression
1 relssdv.2 . . 3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
21alrimivv 1928 . 2 (𝜑 → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
3 relssdv.1 . . 3 (𝜑 → Rel 𝐴)
4 ssrel 5737 . . 3 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
53, 4syl 17 . 2 (𝜑 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
62, 5mpbird 257 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  wss 3911  cop 4591  Rel wrel 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-ss 3928  df-opab 5165  df-xp 5637  df-rel 5638
This theorem is referenced by:  relssres  5982  poirr2  6085  sofld  6148  relssdmrn  6229  relssdmrnOLD  6230  funcres2  17841  wunfunc  17844  fthres2  17877  pospo  18285  joindmss  18319  meetdmss  18333  clatl  18450  subrgdvds  20507  opsrtoslem2  21997  txcls  23525  txdis1cn  23556  txkgen  23573  qustgplem  24042  metustid  24476  metustexhalf  24478  ovoliunlem1  25437  dvres2  25847  cvmlift2lem12  35295  dib2dim  41231  dih2dimbALTN  41233  dihmeetlem1N  41278  dihglblem5apreN  41279  dihmeetlem13N  41307  dihjatcclem4  41409
  Copyright terms: Public domain W3C validator