Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relssdv | Structured version Visualization version GIF version |
Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004.) |
Ref | Expression |
---|---|
relssdv.1 | ⊢ (𝜑 → Rel 𝐴) |
relssdv.2 | ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
Ref | Expression |
---|---|
relssdv | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssdv.2 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
2 | 1 | alrimivv 1932 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
3 | relssdv.1 | . . 3 ⊢ (𝜑 → Rel 𝐴) | |
4 | ssrel 5683 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) |
6 | 2, 5 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∈ wcel 2108 ⊆ wss 3883 〈cop 4564 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: relssres 5921 poirr2 6018 sofld 6079 relssdmrn 6161 funcres2 17529 wunfunc 17530 wunfuncOLD 17531 fthres2 17564 pospo 17978 joindmss 18012 meetdmss 18026 clatl 18141 subrgdvds 19953 opsrtoslem2 21173 txcls 22663 txdis1cn 22694 txkgen 22711 qustgplem 23180 metustid 23616 metustexhalf 23618 ovoliunlem1 24571 dvres2 24981 cvmlift2lem12 33176 dib2dim 39184 dih2dimbALTN 39186 dihmeetlem1N 39231 dihglblem5apreN 39232 dihmeetlem13N 39260 dihjatcclem4 39362 |
Copyright terms: Public domain | W3C validator |