| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relssdv | Structured version Visualization version GIF version | ||
| Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004.) |
| Ref | Expression |
|---|---|
| relssdv.1 | ⊢ (𝜑 → Rel 𝐴) |
| relssdv.2 | ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| relssdv | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relssdv.2 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 2 | 1 | alrimivv 1928 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 3 | relssdv.1 | . . 3 ⊢ (𝜑 → Rel 𝐴) | |
| 4 | ssrel 5766 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) |
| 6 | 2, 5 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 ⊆ wss 3931 〈cop 4612 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-opab 5187 df-xp 5665 df-rel 5666 |
| This theorem is referenced by: relssres 6014 poirr2 6118 sofld 6181 relssdmrn 6262 relssdmrnOLD 6263 funcres2 17916 wunfunc 17919 fthres2 17952 pospo 18360 joindmss 18394 meetdmss 18408 clatl 18523 subrgdvds 20551 opsrtoslem2 22019 txcls 23547 txdis1cn 23578 txkgen 23595 qustgplem 24064 metustid 24498 metustexhalf 24500 ovoliunlem1 25460 dvres2 25870 cvmlift2lem12 35341 dib2dim 41267 dih2dimbALTN 41269 dihmeetlem1N 41314 dihglblem5apreN 41315 dihmeetlem13N 41343 dihjatcclem4 41445 |
| Copyright terms: Public domain | W3C validator |