![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relssdv | Structured version Visualization version GIF version |
Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004.) |
Ref | Expression |
---|---|
relssdv.1 | ⊢ (𝜑 → Rel 𝐴) |
relssdv.2 | ⊢ (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
Ref | Expression |
---|---|
relssdv | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssdv.2 | . . 3 ⊢ (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)) | |
2 | 1 | alrimivv 1932 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
3 | relssdv.1 | . . 3 ⊢ (𝜑 → Rel 𝐴) | |
4 | ssrel 5743 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))) |
6 | 2, 5 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 ∈ wcel 2107 ⊆ wss 3915 ⟨cop 4597 Rel wrel 5643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3450 df-in 3922 df-ss 3932 df-opab 5173 df-xp 5644 df-rel 5645 |
This theorem is referenced by: relssres 5983 poirr2 6083 sofld 6144 relssdmrn 6225 relssdmrnOLD 6226 funcres2 17791 wunfunc 17792 wunfuncOLD 17793 fthres2 17826 pospo 18241 joindmss 18275 meetdmss 18289 clatl 18404 subrgdvds 20252 opsrtoslem2 21479 txcls 22971 txdis1cn 23002 txkgen 23019 qustgplem 23488 metustid 23926 metustexhalf 23928 ovoliunlem1 24882 dvres2 25292 cvmlift2lem12 33948 dib2dim 39735 dih2dimbALTN 39737 dihmeetlem1N 39782 dihglblem5apreN 39783 dihmeetlem13N 39811 dihjatcclem4 39913 |
Copyright terms: Public domain | W3C validator |