| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relssdv | Structured version Visualization version GIF version | ||
| Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004.) |
| Ref | Expression |
|---|---|
| relssdv.1 | ⊢ (𝜑 → Rel 𝐴) |
| relssdv.2 | ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| relssdv | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relssdv.2 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 2 | 1 | alrimivv 1928 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 3 | relssdv.1 | . . 3 ⊢ (𝜑 → Rel 𝐴) | |
| 4 | ssrel 5745 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) |
| 6 | 2, 5 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 ⊆ wss 3914 〈cop 4595 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: relssres 5993 poirr2 6097 sofld 6160 relssdmrn 6241 relssdmrnOLD 6242 funcres2 17860 wunfunc 17863 fthres2 17896 pospo 18304 joindmss 18338 meetdmss 18352 clatl 18467 subrgdvds 20495 opsrtoslem2 21963 txcls 23491 txdis1cn 23522 txkgen 23539 qustgplem 24008 metustid 24442 metustexhalf 24444 ovoliunlem1 25403 dvres2 25813 cvmlift2lem12 35301 dib2dim 41237 dih2dimbALTN 41239 dihmeetlem1N 41284 dihglblem5apreN 41285 dihmeetlem13N 41313 dihjatcclem4 41415 |
| Copyright terms: Public domain | W3C validator |