MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnviin Structured version   Visualization version   GIF version

Theorem cnviin 6247
Description: The converse of an intersection is the intersection of the converse. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
cnviin (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cnviin
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6064 . 2 Rel 𝑥𝐴 𝐵
2 relcnv 6064 . . . . . . 7 Rel 𝐵
3 df-rel 5638 . . . . . . 7 (Rel 𝐵𝐵 ⊆ (V × V))
42, 3mpbi 230 . . . . . 6 𝐵 ⊆ (V × V)
54rgenw 3048 . . . . 5 𝑥𝐴 𝐵 ⊆ (V × V)
6 r19.2z 4454 . . . . 5 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ⊆ (V × V)) → ∃𝑥𝐴 𝐵 ⊆ (V × V))
75, 6mpan2 691 . . . 4 (𝐴 ≠ ∅ → ∃𝑥𝐴 𝐵 ⊆ (V × V))
8 iinss 5015 . . . 4 (∃𝑥𝐴 𝐵 ⊆ (V × V) → 𝑥𝐴 𝐵 ⊆ (V × V))
97, 8syl 17 . . 3 (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 ⊆ (V × V))
10 df-rel 5638 . . 3 (Rel 𝑥𝐴 𝐵 𝑥𝐴 𝐵 ⊆ (V × V))
119, 10sylibr 234 . 2 (𝐴 ≠ ∅ → Rel 𝑥𝐴 𝐵)
12 opex 5419 . . . . 5 𝑏, 𝑎⟩ ∈ V
13 eliin 4956 . . . . 5 (⟨𝑏, 𝑎⟩ ∈ V → (⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵))
1412, 13ax-mp 5 . . . 4 (⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
15 vex 3448 . . . . 5 𝑎 ∈ V
16 vex 3448 . . . . 5 𝑏 ∈ V
1715, 16opelcnv 5835 . . . 4 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵)
18 opex 5419 . . . . . 6 𝑎, 𝑏⟩ ∈ V
19 eliin 4956 . . . . . 6 (⟨𝑎, 𝑏⟩ ∈ V → (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵))
2018, 19ax-mp 5 . . . . 5 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵)
2115, 16opelcnv 5835 . . . . . 6 (⟨𝑎, 𝑏⟩ ∈ 𝐵 ↔ ⟨𝑏, 𝑎⟩ ∈ 𝐵)
2221ralbii 3075 . . . . 5 (∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
2320, 22bitri 275 . . . 4 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
2414, 17, 233bitr4i 303 . . 3 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵)
2524eqrelriv 5743 . 2 ((Rel 𝑥𝐴 𝐵 ∧ Rel 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
261, 11, 25sylancr 587 1 (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  wss 3911  c0 4292  cop 4591   ciin 4952   × cxp 5629  ccnv 5630  Rel wrel 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-iin 4954  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator