MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnviin Structured version   Visualization version   GIF version

Theorem cnviin 6317
Description: The converse of an intersection is the intersection of the converse. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
cnviin (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cnviin
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6134 . 2 Rel 𝑥𝐴 𝐵
2 relcnv 6134 . . . . . . 7 Rel 𝐵
3 df-rel 5707 . . . . . . 7 (Rel 𝐵𝐵 ⊆ (V × V))
42, 3mpbi 230 . . . . . 6 𝐵 ⊆ (V × V)
54rgenw 3071 . . . . 5 𝑥𝐴 𝐵 ⊆ (V × V)
6 r19.2z 4518 . . . . 5 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ⊆ (V × V)) → ∃𝑥𝐴 𝐵 ⊆ (V × V))
75, 6mpan2 690 . . . 4 (𝐴 ≠ ∅ → ∃𝑥𝐴 𝐵 ⊆ (V × V))
8 iinss 5079 . . . 4 (∃𝑥𝐴 𝐵 ⊆ (V × V) → 𝑥𝐴 𝐵 ⊆ (V × V))
97, 8syl 17 . . 3 (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 ⊆ (V × V))
10 df-rel 5707 . . 3 (Rel 𝑥𝐴 𝐵 𝑥𝐴 𝐵 ⊆ (V × V))
119, 10sylibr 234 . 2 (𝐴 ≠ ∅ → Rel 𝑥𝐴 𝐵)
12 opex 5484 . . . . 5 𝑏, 𝑎⟩ ∈ V
13 eliin 5020 . . . . 5 (⟨𝑏, 𝑎⟩ ∈ V → (⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵))
1412, 13ax-mp 5 . . . 4 (⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
15 vex 3492 . . . . 5 𝑎 ∈ V
16 vex 3492 . . . . 5 𝑏 ∈ V
1715, 16opelcnv 5906 . . . 4 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵)
18 opex 5484 . . . . . 6 𝑎, 𝑏⟩ ∈ V
19 eliin 5020 . . . . . 6 (⟨𝑎, 𝑏⟩ ∈ V → (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵))
2018, 19ax-mp 5 . . . . 5 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵)
2115, 16opelcnv 5906 . . . . . 6 (⟨𝑎, 𝑏⟩ ∈ 𝐵 ↔ ⟨𝑏, 𝑎⟩ ∈ 𝐵)
2221ralbii 3099 . . . . 5 (∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
2320, 22bitri 275 . . . 4 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
2414, 17, 233bitr4i 303 . . 3 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵)
2524eqrelriv 5813 . 2 ((Rel 𝑥𝐴 𝐵 ∧ Rel 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
261, 11, 25sylancr 586 1 (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  wss 3976  c0 4352  cop 4654   ciin 5016   × cxp 5698  ccnv 5699  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-iin 5018  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator