MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpuplem Structured version   Visualization version   GIF version

Theorem frgpuplem 18827
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpup.r = ( ~FG𝐼)
Assertion
Ref Expression
frgpuplem ((𝜑𝐴 𝐶) → (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝑦,𝐵,𝑧   𝜑,𝑦,𝑧   𝑦,𝐼,𝑧
Allowed substitution hints:   𝐶(𝑦,𝑧)   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝐻(𝑦,𝑧)   𝑉(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem frgpuplem
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑛 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup.w . . . . . . 7 𝑊 = ( I ‘Word (𝐼 × 2o))
2 frgpup.r . . . . . . 7 = ( ~FG𝐼)
31, 2efgval 18772 . . . . . 6 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))}
4 coeq2 5722 . . . . . . . . . . . . 13 (𝑢 = 𝑣 → (𝑇𝑢) = (𝑇𝑣))
54oveq2d 7161 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))
6 eqid 2818 . . . . . . . . . . . 12 {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} = {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}
75, 6eqer 8313 . . . . . . . . . . 11 {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} Er V
87a1i 11 . . . . . . . . . 10 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} Er V)
9 ssv 3988 . . . . . . . . . . 11 𝑊 ⊆ V
109a1i 11 . . . . . . . . . 10 (𝜑𝑊 ⊆ V)
118, 10erinxp 8360 . . . . . . . . 9 (𝜑 → ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊)
12 df-xp 5554 . . . . . . . . . . . . 13 (𝑊 × 𝑊) = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)}
1312ineq1i 4182 . . . . . . . . . . . 12 ((𝑊 × 𝑊) ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = ({⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)} ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))})
14 incom 4175 . . . . . . . . . . . 12 ((𝑊 × 𝑊) ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊))
15 inopab 5694 . . . . . . . . . . . 12 ({⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)} ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
1613, 14, 153eqtr3i 2849 . . . . . . . . . . 11 ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
17 vex 3495 . . . . . . . . . . . . . 14 𝑢 ∈ V
18 vex 3495 . . . . . . . . . . . . . 14 𝑣 ∈ V
1917, 18prss 4745 . . . . . . . . . . . . 13 ((𝑢𝑊𝑣𝑊) ↔ {𝑢, 𝑣} ⊆ 𝑊)
2019anbi1i 623 . . . . . . . . . . . 12 (((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))))
2120opabbii 5124 . . . . . . . . . . 11 {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
2216, 21eqtri 2841 . . . . . . . . . 10 ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
23 ereq1 8285 . . . . . . . . . 10 (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊))
2422, 23ax-mp 5 . . . . . . . . 9 (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊)
2511, 24sylib 219 . . . . . . . 8 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊)
26 simplrl 773 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑥𝑊)
27 fviss 6734 . . . . . . . . . . . . . . 15 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
281, 27eqsstri 3998 . . . . . . . . . . . . . 14 𝑊 ⊆ Word (𝐼 × 2o)
2928, 26sseldi 3962 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
30 opelxpi 5585 . . . . . . . . . . . . . . 15 ((𝑎𝐼𝑏 ∈ 2o) → ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2o))
3130adantl 482 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2o))
32 simprl 767 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑎𝐼)
33 2oconcl 8117 . . . . . . . . . . . . . . . 16 (𝑏 ∈ 2o → (1o𝑏) ∈ 2o)
3433ad2antll 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (1o𝑏) ∈ 2o)
3532, 34opelxpd 5586 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ⟨𝑎, (1o𝑏)⟩ ∈ (𝐼 × 2o))
3631, 35s2cld 14221 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o))
37 splcl 14102 . . . . . . . . . . . . 13 ((𝑥 ∈ Word (𝐼 × 2o) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ Word (𝐼 × 2o))
3829, 36, 37syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ Word (𝐼 × 2o))
391efgrcl 18770 . . . . . . . . . . . . . 14 (𝑥𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
4026, 39syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
4140simprd 496 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑊 = Word (𝐼 × 2o))
4238, 41eleqtrrd 2913 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊)
43 pfxcl 14027 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o))
4429, 43syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o))
45 frgpup.b . . . . . . . . . . . . . . . . . . 19 𝐵 = (Base‘𝐻)
46 frgpup.n . . . . . . . . . . . . . . . . . . 19 𝑁 = (invg𝐻)
47 frgpup.t . . . . . . . . . . . . . . . . . . 19 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
48 frgpup.h . . . . . . . . . . . . . . . . . . 19 (𝜑𝐻 ∈ Grp)
49 frgpup.i . . . . . . . . . . . . . . . . . . 19 (𝜑𝐼𝑉)
50 frgpup.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:𝐼𝐵)
5145, 46, 47, 48, 49, 50frgpuptf 18825 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
5251ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑇:(𝐼 × 2o)⟶𝐵)
53 ccatco 14185 . . . . . . . . . . . . . . . . 17 (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))
5444, 36, 52, 53syl3anc 1363 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))
5554oveq2d 7161 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))))
5648ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝐻 ∈ Grp)
57 grpmnd 18048 . . . . . . . . . . . . . . . . 17 (𝐻 ∈ Grp → 𝐻 ∈ Mnd)
5856, 57syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝐻 ∈ Mnd)
59 wrdco 14181 . . . . . . . . . . . . . . . . 17 (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵)
6044, 52, 59syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵)
61 wrdco 14181 . . . . . . . . . . . . . . . . 17 ((⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word 𝐵)
6236, 52, 61syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word 𝐵)
63 eqid 2818 . . . . . . . . . . . . . . . . 17 (+g𝐻) = (+g𝐻)
6445, 63gsumccat 17994 . . . . . . . . . . . . . . . 16 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵 ∧ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))))
6558, 60, 62, 64syl3anc 1363 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))))
6652, 31, 35s2co 14270 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) = ⟨“(𝑇‘⟨𝑎, 𝑏⟩)(𝑇‘⟨𝑎, (1o𝑏)⟩)”⟩)
67 df-ov 7148 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎𝑇𝑏) = (𝑇‘⟨𝑎, 𝑏⟩)
6867a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑎𝑇𝑏) = (𝑇‘⟨𝑎, 𝑏⟩))
69 df-ov 7148 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎(𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)𝑏) = ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)
70 eqid 2818 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
7170efgmval 18767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝐼𝑏 ∈ 2o) → (𝑎(𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)𝑏) = ⟨𝑎, (1o𝑏)⟩)
7269, 71syl5eqr 2867 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝐼𝑏 ∈ 2o) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩) = ⟨𝑎, (1o𝑏)⟩)
7372adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩) = ⟨𝑎, (1o𝑏)⟩)
7473fveq2d 6667 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑇‘⟨𝑎, (1o𝑏)⟩))
7545, 46, 47, 48, 49, 50, 70frgpuptinv 18826 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2o)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7630, 75sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7776adantlr 711 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7874, 77eqtr3d 2855 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘⟨𝑎, (1o𝑏)⟩) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7967fveq2i 6666 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁‘(𝑎𝑇𝑏)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩))
8078, 79syl6reqr 2872 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑁‘(𝑎𝑇𝑏)) = (𝑇‘⟨𝑎, (1o𝑏)⟩))
8168, 80s2eqd 14213 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩ = ⟨“(𝑇‘⟨𝑎, 𝑏⟩)(𝑇‘⟨𝑎, (1o𝑏)⟩)”⟩)
8266, 81eqtr4d 2856 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) = ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩)
8382oveq2d 7161 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) = (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩))
84 simprr 769 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑏 ∈ 2o)
8552, 32, 84fovrnd 7309 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑎𝑇𝑏) ∈ 𝐵)
8645, 46grpinvcl 18089 . . . . . . . . . . . . . . . . . . . 20 ((𝐻 ∈ Grp ∧ (𝑎𝑇𝑏) ∈ 𝐵) → (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵)
8756, 85, 86syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵)
8845, 63gsumws2 17995 . . . . . . . . . . . . . . . . . . 19 ((𝐻 ∈ Mnd ∧ (𝑎𝑇𝑏) ∈ 𝐵 ∧ (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵) → (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩) = ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))))
8958, 85, 87, 88syl3anc 1363 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩) = ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))))
90 eqid 2818 . . . . . . . . . . . . . . . . . . . 20 (0g𝐻) = (0g𝐻)
9145, 63, 90, 46grprinv 18091 . . . . . . . . . . . . . . . . . . 19 ((𝐻 ∈ Grp ∧ (𝑎𝑇𝑏) ∈ 𝐵) → ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))) = (0g𝐻))
9256, 85, 91syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))) = (0g𝐻))
9383, 89, 923eqtrd 2857 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) = (0g𝐻))
9493oveq2d 7161 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(0g𝐻)))
9545gsumwcl 17991 . . . . . . . . . . . . . . . . . 18 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵) → (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵)
9658, 60, 95syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵)
9745, 63, 90grprid 18072 . . . . . . . . . . . . . . . . 17 ((𝐻 ∈ Grp ∧ (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(0g𝐻)) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))))
9856, 96, 97syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(0g𝐻)) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))))
9994, 98eqtrd 2853 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))))
10055, 65, 993eqtrrd 2858 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) = (𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))))
101100oveq1d 7160 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
102 swrdcl 13995 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o))
10329, 102syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o))
104 wrdco 14181 . . . . . . . . . . . . . . 15 (((𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) ∈ Word 𝐵)
105103, 52, 104syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) ∈ Word 𝐵)
10645, 63gsumccat 17994 . . . . . . . . . . . . . 14 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵 ∧ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
10758, 60, 105, 106syl3anc 1363 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
108 ccatcl 13914 . . . . . . . . . . . . . . . 16 (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o)) → ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word (𝐼 × 2o))
10944, 36, 108syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word (𝐼 × 2o))
110 wrdco 14181 . . . . . . . . . . . . . . 15 ((((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ∈ Word 𝐵)
111109, 52, 110syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ∈ Word 𝐵)
11245, 63gsumccat 17994 . . . . . . . . . . . . . 14 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ∈ Word 𝐵 ∧ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
11358, 111, 105, 112syl3anc 1363 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
114101, 107, 1133eqtr4d 2863 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
115 simplrr 774 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑛 ∈ (0...(♯‘𝑥)))
116 lencl 13871 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ Word (𝐼 × 2o) → (♯‘𝑥) ∈ ℕ0)
11729, 116syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (♯‘𝑥) ∈ ℕ0)
118 nn0uz 12268 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
119117, 118eleqtrdi 2920 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (♯‘𝑥) ∈ (ℤ‘0))
120 eluzfz2 12903 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑥) ∈ (ℤ‘0) → (♯‘𝑥) ∈ (0...(♯‘𝑥)))
121119, 120syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (♯‘𝑥) ∈ (0...(♯‘𝑥)))
122 ccatpfx 14051 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑛 ∈ (0...(♯‘𝑥)) ∧ (♯‘𝑥) ∈ (0...(♯‘𝑥))) → ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) = (𝑥 prefix (♯‘𝑥)))
12329, 115, 121, 122syl3anc 1363 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) = (𝑥 prefix (♯‘𝑥)))
124 pfxid 14034 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 prefix (♯‘𝑥)) = 𝑥)
12529, 124syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 prefix (♯‘𝑥)) = 𝑥)
126123, 125eqtrd 2853 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) = 𝑥)
127126coeq2d 5726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = (𝑇𝑥))
128 ccatco 14185 . . . . . . . . . . . . . . 15 (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
12944, 103, 52, 128syl3anc 1363 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
130127, 129eqtr3d 2855 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇𝑥) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
131130oveq2d 7161 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
132 splval 14101 . . . . . . . . . . . . . . . 16 ((𝑥𝑊 ∧ (𝑛 ∈ (0...(♯‘𝑥)) ∧ 𝑛 ∈ (0...(♯‘𝑥)) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o))) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) = (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))
13326, 115, 115, 36, 132syl13anc 1364 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) = (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))
134133coeq2d 5726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) = (𝑇 ∘ (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
135 ccatco 14185 . . . . . . . . . . . . . . 15 ((((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word (𝐼 × 2o) ∧ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
136109, 103, 52, 135syl3anc 1363 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
137134, 136eqtrd 2853 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
138137oveq2d 7161 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))) = (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
139114, 131, 1383eqtr4d 2863 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
140 vex 3495 . . . . . . . . . . . 12 𝑥 ∈ V
141 ovex 7178 . . . . . . . . . . . 12 (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ V
142 eleq1 2897 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → (𝑢𝑊𝑥𝑊))
143 eleq1 2897 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → (𝑣𝑊 ↔ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊))
144142, 143bi2anan9 635 . . . . . . . . . . . . . 14 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ((𝑢𝑊𝑣𝑊) ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊)))
14519, 144syl5bbr 286 . . . . . . . . . . . . 13 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ({𝑢, 𝑣} ⊆ 𝑊 ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊)))
146 coeq2 5722 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → (𝑇𝑢) = (𝑇𝑥))
147146oveq2d 7161 . . . . . . . . . . . . . 14 (𝑢 = 𝑥 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑥)))
148 coeq2 5722 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → (𝑇𝑣) = (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
149148oveq2d 7161 . . . . . . . . . . . . . 14 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → (𝐻 Σg (𝑇𝑣)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
150147, 149eqeqan12d 2835 . . . . . . . . . . . . 13 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ((𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)) ↔ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))))
151145, 150anbi12d 630 . . . . . . . . . . . 12 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → (({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ((𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊) ∧ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))))
152 eqid 2818 . . . . . . . . . . . 12 {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
153140, 141, 151, 152braba 5415 . . . . . . . . . . 11 (𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ((𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊) ∧ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))))
15426, 42, 139, 153syl21anbrc 1336 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
155154ralrimivva 3188 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) → ∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
156155ralrimivva 3188 . . . . . . . 8 (𝜑 → ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
1571fvexi 6677 . . . . . . . . . 10 𝑊 ∈ V
158 erex 8302 . . . . . . . . . 10 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 → (𝑊 ∈ V → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V))
15925, 157, 158mpisyl 21 . . . . . . . . 9 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V)
160 ereq1 8285 . . . . . . . . . . 11 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (𝑟 Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊))
161 breq 5059 . . . . . . . . . . . . 13 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
1621612ralbidv 3196 . . . . . . . . . . . 12 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
1631622ralbidv 3196 . . . . . . . . . . 11 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
164160, 163anbi12d 630 . . . . . . . . . 10 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → ((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
165164elabg 3663 . . . . . . . . 9 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V → ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
166159, 165syl 17 . . . . . . . 8 (𝜑 → ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
16725, 156, 166mpbir2and 709 . . . . . . 7 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))})
168 intss1 4882 . . . . . . 7 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
169167, 168syl 17 . . . . . 6 (𝜑 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
1703, 169eqsstrid 4012 . . . . 5 (𝜑 ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
171170ssbrd 5100 . . . 4 (𝜑 → (𝐴 𝐶𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶))
172171imp 407 . . 3 ((𝜑𝐴 𝐶) → 𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶)
1731, 2efger 18773 . . . . . 6 Er 𝑊
174 errel 8287 . . . . . 6 ( Er 𝑊 → Rel )
175173, 174mp1i 13 . . . . 5 (𝜑 → Rel )
176 brrelex12 5597 . . . . 5 ((Rel 𝐴 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
177175, 176sylan 580 . . . 4 ((𝜑𝐴 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
178 preq12 4663 . . . . . . 7 ((𝑢 = 𝐴𝑣 = 𝐶) → {𝑢, 𝑣} = {𝐴, 𝐶})
179178sseq1d 3995 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐶) → ({𝑢, 𝑣} ⊆ 𝑊 ↔ {𝐴, 𝐶} ⊆ 𝑊))
180 coeq2 5722 . . . . . . . 8 (𝑢 = 𝐴 → (𝑇𝑢) = (𝑇𝐴))
181180oveq2d 7161 . . . . . . 7 (𝑢 = 𝐴 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝐴)))
182 coeq2 5722 . . . . . . . 8 (𝑣 = 𝐶 → (𝑇𝑣) = (𝑇𝐶))
183182oveq2d 7161 . . . . . . 7 (𝑣 = 𝐶 → (𝐻 Σg (𝑇𝑣)) = (𝐻 Σg (𝑇𝐶)))
184181, 183eqeqan12d 2835 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐶) → ((𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)) ↔ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶))))
185179, 184anbi12d 630 . . . . 5 ((𝑢 = 𝐴𝑣 = 𝐶) → (({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
186185, 152brabga 5412 . . . 4 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶 ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
187177, 186syl 17 . . 3 ((𝜑𝐴 𝐶) → (𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶 ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
188172, 187mpbid 233 . 2 ((𝜑𝐴 𝐶) → ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶))))
189188simprd 496 1 ((𝜑𝐴 𝐶) → (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  {cab 2796  wral 3135  Vcvv 3492  cdif 3930  cin 3932  wss 3933  c0 4288  ifcif 4463  {cpr 4559  cop 4563  cotp 4565   cint 4867   class class class wbr 5057  {copab 5119   I cid 5452   × cxp 5546  ccom 5552  Rel wrel 5553  wf 6344  cfv 6348  (class class class)co 7145  cmpo 7147  1oc1o 8084  2oc2o 8085   Er wer 8275  0cc0 10525  0cn0 11885  cuz 12231  ...cfz 12880  chash 13678  Word cword 13849   ++ cconcat 13910   substr csubstr 13990   prefix cpfx 14020   splice csplice 14099  ⟨“cs2 14191  Basecbs 16471  +gcplusg 16553  0gc0g 16701   Σg cgsu 16702  Mndcmnd 17899  Grpcgrp 18041  invgcminusg 18042   ~FG cefg 18761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-ot 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-word 13850  df-concat 13911  df-s1 13938  df-substr 13991  df-pfx 14021  df-splice 14100  df-s2 14198  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-0g 16703  df-gsum 16704  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-grp 18044  df-minusg 18045  df-efg 18764
This theorem is referenced by:  frgpupf  18828
  Copyright terms: Public domain W3C validator