MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpuplem Structured version   Visualization version   GIF version

Theorem frgpuplem 19293
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpup.r = ( ~FG𝐼)
Assertion
Ref Expression
frgpuplem ((𝜑𝐴 𝐶) → (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝑦,𝐵,𝑧   𝜑,𝑦,𝑧   𝑦,𝐼,𝑧
Allowed substitution hints:   𝐶(𝑦,𝑧)   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝐻(𝑦,𝑧)   𝑉(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem frgpuplem
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑛 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup.w . . . . . . 7 𝑊 = ( I ‘Word (𝐼 × 2o))
2 frgpup.r . . . . . . 7 = ( ~FG𝐼)
31, 2efgval 19238 . . . . . 6 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))}
4 coeq2 5756 . . . . . . . . . . . . 13 (𝑢 = 𝑣 → (𝑇𝑢) = (𝑇𝑣))
54oveq2d 7271 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))
6 eqid 2738 . . . . . . . . . . . 12 {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} = {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}
75, 6eqer 8491 . . . . . . . . . . 11 {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} Er V
87a1i 11 . . . . . . . . . 10 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} Er V)
9 ssv 3941 . . . . . . . . . . 11 𝑊 ⊆ V
109a1i 11 . . . . . . . . . 10 (𝜑𝑊 ⊆ V)
118, 10erinxp 8538 . . . . . . . . 9 (𝜑 → ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊)
12 df-xp 5586 . . . . . . . . . . . . 13 (𝑊 × 𝑊) = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)}
1312ineq1i 4139 . . . . . . . . . . . 12 ((𝑊 × 𝑊) ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = ({⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)} ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))})
14 incom 4131 . . . . . . . . . . . 12 ((𝑊 × 𝑊) ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊))
15 inopab 5728 . . . . . . . . . . . 12 ({⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)} ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
1613, 14, 153eqtr3i 2774 . . . . . . . . . . 11 ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
17 vex 3426 . . . . . . . . . . . . . 14 𝑢 ∈ V
18 vex 3426 . . . . . . . . . . . . . 14 𝑣 ∈ V
1917, 18prss 4750 . . . . . . . . . . . . 13 ((𝑢𝑊𝑣𝑊) ↔ {𝑢, 𝑣} ⊆ 𝑊)
2019anbi1i 623 . . . . . . . . . . . 12 (((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))))
2120opabbii 5137 . . . . . . . . . . 11 {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
2216, 21eqtri 2766 . . . . . . . . . 10 ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
23 ereq1 8463 . . . . . . . . . 10 (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊))
2422, 23ax-mp 5 . . . . . . . . 9 (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊)
2511, 24sylib 217 . . . . . . . 8 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊)
26 simplrl 773 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑥𝑊)
27 fviss 6827 . . . . . . . . . . . . . . 15 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
281, 27eqsstri 3951 . . . . . . . . . . . . . 14 𝑊 ⊆ Word (𝐼 × 2o)
2928, 26sselid 3915 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
30 opelxpi 5617 . . . . . . . . . . . . . . 15 ((𝑎𝐼𝑏 ∈ 2o) → ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2o))
3130adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2o))
32 simprl 767 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑎𝐼)
33 2oconcl 8295 . . . . . . . . . . . . . . . 16 (𝑏 ∈ 2o → (1o𝑏) ∈ 2o)
3433ad2antll 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (1o𝑏) ∈ 2o)
3532, 34opelxpd 5618 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ⟨𝑎, (1o𝑏)⟩ ∈ (𝐼 × 2o))
3631, 35s2cld 14512 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o))
37 splcl 14393 . . . . . . . . . . . . 13 ((𝑥 ∈ Word (𝐼 × 2o) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ Word (𝐼 × 2o))
3829, 36, 37syl2anc 583 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ Word (𝐼 × 2o))
391efgrcl 19236 . . . . . . . . . . . . . 14 (𝑥𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
4026, 39syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
4140simprd 495 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑊 = Word (𝐼 × 2o))
4238, 41eleqtrrd 2842 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊)
43 pfxcl 14318 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o))
4429, 43syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o))
45 frgpup.b . . . . . . . . . . . . . . . . . . 19 𝐵 = (Base‘𝐻)
46 frgpup.n . . . . . . . . . . . . . . . . . . 19 𝑁 = (invg𝐻)
47 frgpup.t . . . . . . . . . . . . . . . . . . 19 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
48 frgpup.h . . . . . . . . . . . . . . . . . . 19 (𝜑𝐻 ∈ Grp)
49 frgpup.i . . . . . . . . . . . . . . . . . . 19 (𝜑𝐼𝑉)
50 frgpup.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:𝐼𝐵)
5145, 46, 47, 48, 49, 50frgpuptf 19291 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
5251ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑇:(𝐼 × 2o)⟶𝐵)
53 ccatco 14476 . . . . . . . . . . . . . . . . 17 (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))
5444, 36, 52, 53syl3anc 1369 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))
5554oveq2d 7271 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))))
5648ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝐻 ∈ Grp)
5756grpmndd 18504 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝐻 ∈ Mnd)
58 wrdco 14472 . . . . . . . . . . . . . . . . 17 (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵)
5944, 52, 58syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵)
60 wrdco 14472 . . . . . . . . . . . . . . . . 17 ((⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word 𝐵)
6136, 52, 60syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word 𝐵)
62 eqid 2738 . . . . . . . . . . . . . . . . 17 (+g𝐻) = (+g𝐻)
6345, 62gsumccat 18395 . . . . . . . . . . . . . . . 16 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵 ∧ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))))
6457, 59, 61, 63syl3anc 1369 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))))
6552, 31, 35s2co 14561 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) = ⟨“(𝑇‘⟨𝑎, 𝑏⟩)(𝑇‘⟨𝑎, (1o𝑏)⟩)”⟩)
66 df-ov 7258 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎𝑇𝑏) = (𝑇‘⟨𝑎, 𝑏⟩)
6766a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑎𝑇𝑏) = (𝑇‘⟨𝑎, 𝑏⟩))
6866fveq2i 6759 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁‘(𝑎𝑇𝑏)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩))
69 df-ov 7258 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎(𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)𝑏) = ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)
70 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
7170efgmval 19233 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝐼𝑏 ∈ 2o) → (𝑎(𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)𝑏) = ⟨𝑎, (1o𝑏)⟩)
7269, 71eqtr3id 2793 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝐼𝑏 ∈ 2o) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩) = ⟨𝑎, (1o𝑏)⟩)
7372adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩) = ⟨𝑎, (1o𝑏)⟩)
7473fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑇‘⟨𝑎, (1o𝑏)⟩))
7545, 46, 47, 48, 49, 50, 70frgpuptinv 19292 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2o)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7630, 75sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7776adantlr 711 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7874, 77eqtr3d 2780 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘⟨𝑎, (1o𝑏)⟩) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7968, 78eqtr4id 2798 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑁‘(𝑎𝑇𝑏)) = (𝑇‘⟨𝑎, (1o𝑏)⟩))
8067, 79s2eqd 14504 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩ = ⟨“(𝑇‘⟨𝑎, 𝑏⟩)(𝑇‘⟨𝑎, (1o𝑏)⟩)”⟩)
8165, 80eqtr4d 2781 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) = ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩)
8281oveq2d 7271 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) = (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩))
83 simprr 769 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑏 ∈ 2o)
8452, 32, 83fovrnd 7422 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑎𝑇𝑏) ∈ 𝐵)
8545, 46grpinvcl 18542 . . . . . . . . . . . . . . . . . . . 20 ((𝐻 ∈ Grp ∧ (𝑎𝑇𝑏) ∈ 𝐵) → (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵)
8656, 84, 85syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵)
8745, 62gsumws2 18396 . . . . . . . . . . . . . . . . . . 19 ((𝐻 ∈ Mnd ∧ (𝑎𝑇𝑏) ∈ 𝐵 ∧ (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵) → (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩) = ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))))
8857, 84, 86, 87syl3anc 1369 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩) = ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))))
89 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (0g𝐻) = (0g𝐻)
9045, 62, 89, 46grprinv 18544 . . . . . . . . . . . . . . . . . . 19 ((𝐻 ∈ Grp ∧ (𝑎𝑇𝑏) ∈ 𝐵) → ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))) = (0g𝐻))
9156, 84, 90syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))) = (0g𝐻))
9282, 88, 913eqtrd 2782 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) = (0g𝐻))
9392oveq2d 7271 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(0g𝐻)))
9445gsumwcl 18392 . . . . . . . . . . . . . . . . . 18 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵) → (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵)
9557, 59, 94syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵)
9645, 62, 89grprid 18525 . . . . . . . . . . . . . . . . 17 ((𝐻 ∈ Grp ∧ (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(0g𝐻)) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))))
9756, 95, 96syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(0g𝐻)) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))))
9893, 97eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))))
9955, 64, 983eqtrrd 2783 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) = (𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))))
10099oveq1d 7270 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
101 swrdcl 14286 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o))
10229, 101syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o))
103 wrdco 14472 . . . . . . . . . . . . . . 15 (((𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) ∈ Word 𝐵)
104102, 52, 103syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) ∈ Word 𝐵)
10545, 62gsumccat 18395 . . . . . . . . . . . . . 14 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵 ∧ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
10657, 59, 104, 105syl3anc 1369 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
107 ccatcl 14205 . . . . . . . . . . . . . . . 16 (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o)) → ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word (𝐼 × 2o))
10844, 36, 107syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word (𝐼 × 2o))
109 wrdco 14472 . . . . . . . . . . . . . . 15 ((((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ∈ Word 𝐵)
110108, 52, 109syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ∈ Word 𝐵)
11145, 62gsumccat 18395 . . . . . . . . . . . . . 14 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ∈ Word 𝐵 ∧ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
11257, 110, 104, 111syl3anc 1369 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
113100, 106, 1123eqtr4d 2788 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
114 simplrr 774 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑛 ∈ (0...(♯‘𝑥)))
115 lencl 14164 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ Word (𝐼 × 2o) → (♯‘𝑥) ∈ ℕ0)
11629, 115syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (♯‘𝑥) ∈ ℕ0)
117 nn0uz 12549 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
118116, 117eleqtrdi 2849 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (♯‘𝑥) ∈ (ℤ‘0))
119 eluzfz2 13193 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑥) ∈ (ℤ‘0) → (♯‘𝑥) ∈ (0...(♯‘𝑥)))
120118, 119syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (♯‘𝑥) ∈ (0...(♯‘𝑥)))
121 ccatpfx 14342 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑛 ∈ (0...(♯‘𝑥)) ∧ (♯‘𝑥) ∈ (0...(♯‘𝑥))) → ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) = (𝑥 prefix (♯‘𝑥)))
12229, 114, 120, 121syl3anc 1369 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) = (𝑥 prefix (♯‘𝑥)))
123 pfxid 14325 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 prefix (♯‘𝑥)) = 𝑥)
12429, 123syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 prefix (♯‘𝑥)) = 𝑥)
125122, 124eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) = 𝑥)
126125coeq2d 5760 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = (𝑇𝑥))
127 ccatco 14476 . . . . . . . . . . . . . . 15 (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
12844, 102, 52, 127syl3anc 1369 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
129126, 128eqtr3d 2780 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇𝑥) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
130129oveq2d 7271 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
131 splval 14392 . . . . . . . . . . . . . . . 16 ((𝑥𝑊 ∧ (𝑛 ∈ (0...(♯‘𝑥)) ∧ 𝑛 ∈ (0...(♯‘𝑥)) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o))) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) = (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))
13226, 114, 114, 36, 131syl13anc 1370 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) = (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))
133132coeq2d 5760 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) = (𝑇 ∘ (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
134 ccatco 14476 . . . . . . . . . . . . . . 15 ((((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word (𝐼 × 2o) ∧ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
135108, 102, 52, 134syl3anc 1369 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
136133, 135eqtrd 2778 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
137136oveq2d 7271 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))) = (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
138113, 130, 1373eqtr4d 2788 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
139 vex 3426 . . . . . . . . . . . 12 𝑥 ∈ V
140 ovex 7288 . . . . . . . . . . . 12 (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ V
141 eleq1 2826 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → (𝑢𝑊𝑥𝑊))
142 eleq1 2826 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → (𝑣𝑊 ↔ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊))
143141, 142bi2anan9 635 . . . . . . . . . . . . . 14 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ((𝑢𝑊𝑣𝑊) ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊)))
14419, 143bitr3id 284 . . . . . . . . . . . . 13 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ({𝑢, 𝑣} ⊆ 𝑊 ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊)))
145 coeq2 5756 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → (𝑇𝑢) = (𝑇𝑥))
146145oveq2d 7271 . . . . . . . . . . . . . 14 (𝑢 = 𝑥 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑥)))
147 coeq2 5756 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → (𝑇𝑣) = (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
148147oveq2d 7271 . . . . . . . . . . . . . 14 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → (𝐻 Σg (𝑇𝑣)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
149146, 148eqeqan12d 2752 . . . . . . . . . . . . 13 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ((𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)) ↔ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))))
150144, 149anbi12d 630 . . . . . . . . . . . 12 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → (({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ((𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊) ∧ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))))
151 eqid 2738 . . . . . . . . . . . 12 {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
152139, 140, 150, 151braba 5443 . . . . . . . . . . 11 (𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ((𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊) ∧ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))))
15326, 42, 138, 152syl21anbrc 1342 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
154153ralrimivva 3114 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) → ∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
155154ralrimivva 3114 . . . . . . . 8 (𝜑 → ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
1561fvexi 6770 . . . . . . . . . 10 𝑊 ∈ V
157 erex 8480 . . . . . . . . . 10 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 → (𝑊 ∈ V → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V))
15825, 156, 157mpisyl 21 . . . . . . . . 9 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V)
159 ereq1 8463 . . . . . . . . . . 11 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (𝑟 Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊))
160 breq 5072 . . . . . . . . . . . . 13 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
1611602ralbidv 3122 . . . . . . . . . . . 12 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
1621612ralbidv 3122 . . . . . . . . . . 11 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
163159, 162anbi12d 630 . . . . . . . . . 10 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → ((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
164163elabg 3600 . . . . . . . . 9 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V → ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
165158, 164syl 17 . . . . . . . 8 (𝜑 → ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
16625, 155, 165mpbir2and 709 . . . . . . 7 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))})
167 intss1 4891 . . . . . . 7 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
168166, 167syl 17 . . . . . 6 (𝜑 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
1693, 168eqsstrid 3965 . . . . 5 (𝜑 ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
170169ssbrd 5113 . . . 4 (𝜑 → (𝐴 𝐶𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶))
171170imp 406 . . 3 ((𝜑𝐴 𝐶) → 𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶)
1721, 2efger 19239 . . . . . 6 Er 𝑊
173 errel 8465 . . . . . 6 ( Er 𝑊 → Rel )
174172, 173mp1i 13 . . . . 5 (𝜑 → Rel )
175 brrelex12 5630 . . . . 5 ((Rel 𝐴 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
176174, 175sylan 579 . . . 4 ((𝜑𝐴 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
177 preq12 4668 . . . . . . 7 ((𝑢 = 𝐴𝑣 = 𝐶) → {𝑢, 𝑣} = {𝐴, 𝐶})
178177sseq1d 3948 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐶) → ({𝑢, 𝑣} ⊆ 𝑊 ↔ {𝐴, 𝐶} ⊆ 𝑊))
179 coeq2 5756 . . . . . . . 8 (𝑢 = 𝐴 → (𝑇𝑢) = (𝑇𝐴))
180179oveq2d 7271 . . . . . . 7 (𝑢 = 𝐴 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝐴)))
181 coeq2 5756 . . . . . . . 8 (𝑣 = 𝐶 → (𝑇𝑣) = (𝑇𝐶))
182181oveq2d 7271 . . . . . . 7 (𝑣 = 𝐶 → (𝐻 Σg (𝑇𝑣)) = (𝐻 Σg (𝑇𝐶)))
183180, 182eqeqan12d 2752 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐶) → ((𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)) ↔ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶))))
184178, 183anbi12d 630 . . . . 5 ((𝑢 = 𝐴𝑣 = 𝐶) → (({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
185184, 151brabga 5440 . . . 4 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶 ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
186176, 185syl 17 . . 3 ((𝜑𝐴 𝐶) → (𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶 ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
187171, 186mpbid 231 . 2 ((𝜑𝐴 𝐶) → ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶))))
188187simprd 495 1 ((𝜑𝐴 𝐶) → (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  Vcvv 3422  cdif 3880  cin 3882  wss 3883  c0 4253  ifcif 4456  {cpr 4560  cop 4564  cotp 4566   cint 4876   class class class wbr 5070  {copab 5132   I cid 5479   × cxp 5578  ccom 5584  Rel wrel 5585  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  1oc1o 8260  2oc2o 8261   Er wer 8453  0cc0 10802  0cn0 12163  cuz 12511  ...cfz 13168  chash 13972  Word cword 14145   ++ cconcat 14201   substr csubstr 14281   prefix cpfx 14311   splice csplice 14390  ⟨“cs2 14482  Basecbs 16840  +gcplusg 16888  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  Grpcgrp 18492  invgcminusg 18493   ~FG cefg 19227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-splice 14391  df-s2 14489  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-efg 19230
This theorem is referenced by:  frgpupf  19294
  Copyright terms: Public domain W3C validator