Step | Hyp | Ref
| Expression |
1 | | frgpup.w |
. . . . . . 7
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
2 | | frgpup.r |
. . . . . . 7
⊢ ∼ = (
~FG ‘𝐼) |
3 | 1, 2 | efgval 19332 |
. . . . . 6
⊢ ∼ =
∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))} |
4 | | coeq2 5770 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑣 → (𝑇 ∘ 𝑢) = (𝑇 ∘ 𝑣)) |
5 | 4 | oveq2d 7300 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑣 → (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))) |
6 | | eqid 2739 |
. . . . . . . . . . . 12
⊢
{〈𝑢, 𝑣〉 ∣ (𝐻 Σg
(𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} = {〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} |
7 | 5, 6 | eqer 8542 |
. . . . . . . . . . 11
⊢
{〈𝑢, 𝑣〉 ∣ (𝐻 Σg
(𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} Er V |
8 | 7 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → {〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} Er V) |
9 | | ssv 3946 |
. . . . . . . . . . 11
⊢ 𝑊 ⊆ V |
10 | 9 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ⊆ V) |
11 | 8, 10 | erinxp 8589 |
. . . . . . . . 9
⊢ (𝜑 → ({〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊) |
12 | | df-xp 5596 |
. . . . . . . . . . . . 13
⊢ (𝑊 × 𝑊) = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊)} |
13 | 12 | ineq1i 4143 |
. . . . . . . . . . . 12
⊢ ((𝑊 × 𝑊) ∩ {〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))}) = ({〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊)} ∩ {〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))}) |
14 | | incom 4136 |
. . . . . . . . . . . 12
⊢ ((𝑊 × 𝑊) ∩ {〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))}) = ({〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} ∩ (𝑊 × 𝑊)) |
15 | | inopab 5741 |
. . . . . . . . . . . 12
⊢
({〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊)} ∩ {〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))}) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊) ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} |
16 | 13, 14, 15 | 3eqtr3i 2775 |
. . . . . . . . . . 11
⊢
({〈𝑢, 𝑣〉 ∣ (𝐻 Σg
(𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} ∩ (𝑊 × 𝑊)) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊) ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} |
17 | | vex 3437 |
. . . . . . . . . . . . . 14
⊢ 𝑢 ∈ V |
18 | | vex 3437 |
. . . . . . . . . . . . . 14
⊢ 𝑣 ∈ V |
19 | 17, 18 | prss 4754 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊) ↔ {𝑢, 𝑣} ⊆ 𝑊) |
20 | 19 | anbi1i 624 |
. . . . . . . . . . . 12
⊢ (((𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊) ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))) ↔ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))) |
21 | 20 | opabbii 5142 |
. . . . . . . . . . 11
⊢
{〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊) ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} |
22 | 16, 21 | eqtri 2767 |
. . . . . . . . . 10
⊢
({〈𝑢, 𝑣〉 ∣ (𝐻 Σg
(𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} ∩ (𝑊 × 𝑊)) = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} |
23 | | ereq1 8514 |
. . . . . . . . . 10
⊢
(({〈𝑢, 𝑣〉 ∣ (𝐻 Σg
(𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} ∩ (𝑊 × 𝑊)) = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} → (({〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊 ↔ {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} Er 𝑊)) |
24 | 22, 23 | ax-mp 5 |
. . . . . . . . 9
⊢
(({〈𝑢, 𝑣〉 ∣ (𝐻 Σg
(𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊 ↔ {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} Er 𝑊) |
25 | 11, 24 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} Er 𝑊) |
26 | | simplrl 774 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝑥 ∈ 𝑊) |
27 | | fviss 6854 |
. . . . . . . . . . . . . . 15
⊢ ( I
‘Word (𝐼 ×
2o)) ⊆ Word (𝐼 × 2o) |
28 | 1, 27 | eqsstri 3956 |
. . . . . . . . . . . . . 14
⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
29 | 28, 26 | sselid 3920 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝑥 ∈ Word (𝐼 × 2o)) |
30 | | opelxpi 5627 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o) → 〈𝑎, 𝑏〉 ∈ (𝐼 × 2o)) |
31 | 30 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 〈𝑎, 𝑏〉 ∈ (𝐼 × 2o)) |
32 | | simprl 768 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝑎 ∈ 𝐼) |
33 | | 2oconcl 8342 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ 2o →
(1o ∖ 𝑏)
∈ 2o) |
34 | 33 | ad2antll 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (1o
∖ 𝑏) ∈
2o) |
35 | 32, 34 | opelxpd 5628 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 〈𝑎, (1o ∖ 𝑏)〉 ∈ (𝐼 ×
2o)) |
36 | 31, 35 | s2cld 14593 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) →
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉 ∈ Word (𝐼 ×
2o)) |
37 | | splcl 14474 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Word (𝐼 × 2o) ∧
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉 ∈ Word (𝐼 × 2o)) →
(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈ Word
(𝐼 ×
2o)) |
38 | 29, 36, 37 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈ Word
(𝐼 ×
2o)) |
39 | 1 | efgrcl 19330 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
40 | 26, 39 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
41 | 40 | simprd 496 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝑊 = Word (𝐼 × 2o)) |
42 | 38, 41 | eleqtrrd 2843 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈ 𝑊) |
43 | | pfxcl 14399 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o)) |
44 | 29, 43 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o)) |
45 | | frgpup.b |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐵 = (Base‘𝐻) |
46 | | frgpup.n |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑁 = (invg‘𝐻) |
47 | | frgpup.t |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
48 | | frgpup.h |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐻 ∈ Grp) |
49 | | frgpup.i |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
50 | | frgpup.a |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
51 | 45, 46, 47, 48, 49, 50 | frgpuptf 19385 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
52 | 51 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝑇:(𝐼 × 2o)⟶𝐵) |
53 | | ccatco 14557 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉 ∈ Word (𝐼 × 2o) ∧
𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉))) |
54 | 44, 36, 52, 53 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉))) |
55 | 54 | oveq2d 7300 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
(𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉))) = (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)))) |
56 | 48 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝐻 ∈ Grp) |
57 | 56 | grpmndd 18598 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝐻 ∈ Mnd) |
58 | | wrdco 14553 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵) |
59 | 44, 52, 58 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵) |
60 | | wrdco 14553 |
. . . . . . . . . . . . . . . . 17
⊢
((〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉 ∈ Word (𝐼 × 2o) ∧
𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ∈ Word 𝐵) |
61 | 36, 52, 60 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ∈ Word 𝐵) |
62 | | eqid 2739 |
. . . . . . . . . . . . . . . . 17
⊢
(+g‘𝐻) = (+g‘𝐻) |
63 | 45, 62 | gsumccat 18489 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵 ∧ (𝑇 ∘ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)))) |
64 | 57, 59, 61, 63 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)))) |
65 | 52, 31, 35 | s2co 14642 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) = 〈“(𝑇‘〈𝑎, 𝑏〉)(𝑇‘〈𝑎, (1o ∖ 𝑏)〉)”〉) |
66 | | df-ov 7287 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎𝑇𝑏) = (𝑇‘〈𝑎, 𝑏〉) |
67 | 66 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑎𝑇𝑏) = (𝑇‘〈𝑎, 𝑏〉)) |
68 | 66 | fveq2i 6786 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁‘(𝑎𝑇𝑏)) = (𝑁‘(𝑇‘〈𝑎, 𝑏〉)) |
69 | | df-ov 7287 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎(𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)𝑏) = ((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘〈𝑎, 𝑏〉) |
70 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
71 | 70 | efgmval 19327 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o) → (𝑎(𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)𝑏) = 〈𝑎, (1o ∖ 𝑏)〉) |
72 | 69, 71 | eqtr3id 2793 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o) → ((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘〈𝑎, 𝑏〉) = 〈𝑎, (1o ∖ 𝑏)〉) |
73 | 72 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘〈𝑎, 𝑏〉) = 〈𝑎, (1o ∖ 𝑏)〉) |
74 | 73 | fveq2d 6787 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇‘((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘〈𝑎, 𝑏〉)) = (𝑇‘〈𝑎, (1o ∖ 𝑏)〉)) |
75 | 45, 46, 47, 48, 49, 50, 70 | frgpuptinv 19386 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 〈𝑎, 𝑏〉 ∈ (𝐼 × 2o)) → (𝑇‘((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘〈𝑎, 𝑏〉)) = (𝑁‘(𝑇‘〈𝑎, 𝑏〉))) |
76 | 30, 75 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇‘((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘〈𝑎, 𝑏〉)) = (𝑁‘(𝑇‘〈𝑎, 𝑏〉))) |
77 | 76 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇‘((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘〈𝑎, 𝑏〉)) = (𝑁‘(𝑇‘〈𝑎, 𝑏〉))) |
78 | 74, 77 | eqtr3d 2781 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇‘〈𝑎, (1o ∖ 𝑏)〉) = (𝑁‘(𝑇‘〈𝑎, 𝑏〉))) |
79 | 68, 78 | eqtr4id 2798 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑁‘(𝑎𝑇𝑏)) = (𝑇‘〈𝑎, (1o ∖ 𝑏)〉)) |
80 | 67, 79 | s2eqd 14585 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) →
〈“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”〉 = 〈“(𝑇‘〈𝑎, 𝑏〉)(𝑇‘〈𝑎, (1o ∖ 𝑏)〉)”〉) |
81 | 65, 80 | eqtr4d 2782 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) = 〈“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”〉) |
82 | 81 | oveq2d 7300 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
(𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) = (𝐻 Σg
〈“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”〉)) |
83 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝑏 ∈
2o) |
84 | 52, 32, 83 | fovrnd 7453 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑎𝑇𝑏) ∈ 𝐵) |
85 | 45, 46 | grpinvcl 18636 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐻 ∈ Grp ∧ (𝑎𝑇𝑏) ∈ 𝐵) → (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵) |
86 | 56, 84, 85 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵) |
87 | 45, 62 | gsumws2 18490 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐻 ∈ Mnd ∧ (𝑎𝑇𝑏) ∈ 𝐵 ∧ (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵) → (𝐻 Σg
〈“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”〉) = ((𝑎𝑇𝑏)(+g‘𝐻)(𝑁‘(𝑎𝑇𝑏)))) |
88 | 57, 84, 86, 87 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
〈“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”〉) = ((𝑎𝑇𝑏)(+g‘𝐻)(𝑁‘(𝑎𝑇𝑏)))) |
89 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(0g‘𝐻) = (0g‘𝐻) |
90 | 45, 62, 89, 46 | grprinv 18638 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐻 ∈ Grp ∧ (𝑎𝑇𝑏) ∈ 𝐵) → ((𝑎𝑇𝑏)(+g‘𝐻)(𝑁‘(𝑎𝑇𝑏))) = (0g‘𝐻)) |
91 | 56, 84, 90 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝑎𝑇𝑏)(+g‘𝐻)(𝑁‘(𝑎𝑇𝑏))) = (0g‘𝐻)) |
92 | 82, 88, 91 | 3eqtrd 2783 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
(𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) =
(0g‘𝐻)) |
93 | 92 | oveq2d 7300 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝐻 Σg
(𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(0g‘𝐻))) |
94 | 45 | gsumwcl 18486 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵) → (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵) |
95 | 57, 59, 94 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
(𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵) |
96 | 45, 62, 89 | grprid 18619 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻 ∈ Grp ∧ (𝐻 Σg
(𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(0g‘𝐻)) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))) |
97 | 56, 95, 96 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝐻 Σg
(𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(0g‘𝐻)) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))) |
98 | 93, 97 | eqtrd 2779 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝐻 Σg
(𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉))) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))) |
99 | 55, 64, 98 | 3eqtrrd 2784 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
(𝑇 ∘ (𝑥 prefix 𝑛))) = (𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)))) |
100 | 99 | oveq1d 7299 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝐻 Σg
(𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))))) |
101 | | swrdcl 14367 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 substr 〈𝑛, (♯‘𝑥)〉) ∈ Word (𝐼 × 2o)) |
102 | 29, 101 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑥 substr 〈𝑛, (♯‘𝑥)〉) ∈ Word (𝐼 × 2o)) |
103 | | wrdco 14553 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 substr 〈𝑛, (♯‘𝑥)〉) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)) ∈ Word 𝐵) |
104 | 102, 52, 103 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)) ∈ Word 𝐵) |
105 | 45, 62 | gsumccat 18489 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵 ∧ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))))) |
106 | 57, 59, 104, 105 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))))) |
107 | | ccatcl 14286 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉 ∈ Word (𝐼 × 2o)) →
((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ∈ Word (𝐼 ×
2o)) |
108 | 44, 36, 107 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ∈ Word (𝐼 ×
2o)) |
109 | | wrdco 14553 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ∈ Word (𝐼 × 2o) ∧
𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ∈ Word 𝐵) |
110 | 108, 52, 109 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ∈ Word 𝐵) |
111 | 45, 62 | gsumccat 18489 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 ∈ Mnd ∧ (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ∈ Word 𝐵 ∧ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))))) |
112 | 57, 110, 104, 111 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
((𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))))) |
113 | 100, 106,
112 | 3eqtr4d 2789 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) = (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))))) |
114 | | simplrr 775 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝑛 ∈
(0...(♯‘𝑥))) |
115 | | lencl 14245 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ Word (𝐼 × 2o) →
(♯‘𝑥) ∈
ℕ0) |
116 | 29, 115 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) →
(♯‘𝑥) ∈
ℕ0) |
117 | | nn0uz 12629 |
. . . . . . . . . . . . . . . . . . 19
⊢
ℕ0 = (ℤ≥‘0) |
118 | 116, 117 | eleqtrdi 2850 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) →
(♯‘𝑥) ∈
(ℤ≥‘0)) |
119 | | eluzfz2 13273 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑥)
∈ (ℤ≥‘0) → (♯‘𝑥) ∈
(0...(♯‘𝑥))) |
120 | 118, 119 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) →
(♯‘𝑥) ∈
(0...(♯‘𝑥))) |
121 | | ccatpfx 14423 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑛 ∈
(0...(♯‘𝑥))
∧ (♯‘𝑥)
∈ (0...(♯‘𝑥))) → ((𝑥 prefix 𝑛) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)) = (𝑥 prefix (♯‘𝑥))) |
122 | 29, 114, 120, 121 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)) = (𝑥 prefix (♯‘𝑥))) |
123 | | pfxid 14406 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 prefix (♯‘𝑥)) = 𝑥) |
124 | 29, 123 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑥 prefix (♯‘𝑥)) = 𝑥) |
125 | 122, 124 | eqtrd 2779 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)) = 𝑥) |
126 | 125 | coeq2d 5774 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))) = (𝑇 ∘ 𝑥)) |
127 | | ccatco 14557 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ (𝑥 substr 〈𝑛, (♯‘𝑥)〉) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) |
128 | 44, 102, 52, 127 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) |
129 | 126, 128 | eqtr3d 2781 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ 𝑥) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) |
130 | 129 | oveq2d 7300 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
(𝑇 ∘ 𝑥)) = (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))))) |
131 | | splval 14473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑊 ∧ (𝑛 ∈ (0...(♯‘𝑥)) ∧ 𝑛 ∈ (0...(♯‘𝑥)) ∧
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉 ∈ Word (𝐼 × 2o))) →
(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) = (((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))) |
132 | 26, 114, 114, 36, 131 | syl13anc 1371 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) = (((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))) |
133 | 132 | coeq2d 5774 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) = (𝑇 ∘ (((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) |
134 | | ccatco 14557 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ∈ Word (𝐼 × 2o) ∧
(𝑥 substr 〈𝑛, (♯‘𝑥)〉) ∈ Word (𝐼 × 2o) ∧
𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) |
135 | 108, 102,
52, 134 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ (((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) |
136 | 133, 135 | eqtrd 2779 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) |
137 | 136 | oveq2d 7300 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
(𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))) = (𝐻 Σg
((𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))))) |
138 | 113, 130,
137 | 3eqtr4d 2789 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
(𝑇 ∘ 𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)))) |
139 | | vex 3437 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
140 | | ovex 7317 |
. . . . . . . . . . . 12
⊢ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈
V |
141 | | eleq1 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑥 → (𝑢 ∈ 𝑊 ↔ 𝑥 ∈ 𝑊)) |
142 | | eleq1 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) → (𝑣 ∈ 𝑊 ↔ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈ 𝑊)) |
143 | 141, 142 | bi2anan9 636 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑥 ∧ 𝑣 = (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) → ((𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊) ↔ (𝑥 ∈ 𝑊 ∧ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈ 𝑊))) |
144 | 19, 143 | bitr3id 285 |
. . . . . . . . . . . . 13
⊢ ((𝑢 = 𝑥 ∧ 𝑣 = (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) → ({𝑢, 𝑣} ⊆ 𝑊 ↔ (𝑥 ∈ 𝑊 ∧ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈ 𝑊))) |
145 | | coeq2 5770 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑥 → (𝑇 ∘ 𝑢) = (𝑇 ∘ 𝑥)) |
146 | 145 | oveq2d 7300 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑥 → (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑥))) |
147 | | coeq2 5770 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) → (𝑇 ∘ 𝑣) = (𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))) |
148 | 147 | oveq2d 7300 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) → (𝐻 Σg
(𝑇 ∘ 𝑣)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)))) |
149 | 146, 148 | eqeqan12d 2753 |
. . . . . . . . . . . . 13
⊢ ((𝑢 = 𝑥 ∧ 𝑣 = (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) → ((𝐻 Σg
(𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)) ↔ (𝐻 Σg (𝑇 ∘ 𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))))) |
150 | 144, 149 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ ((𝑢 = 𝑥 ∧ 𝑣 = (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) → (({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))) ↔ ((𝑥 ∈ 𝑊 ∧ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈ 𝑊) ∧ (𝐻 Σg (𝑇 ∘ 𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)))))) |
151 | | eqid 2739 |
. . . . . . . . . . . 12
⊢
{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} |
152 | 139, 140,
150, 151 | braba 5451 |
. . . . . . . . . . 11
⊢ (𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ↔ ((𝑥 ∈ 𝑊 ∧ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈ 𝑊) ∧ (𝐻 Σg (𝑇 ∘ 𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))))) |
153 | 26, 42, 138, 152 | syl21anbrc 1343 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) |
154 | 153 | ralrimivva 3124 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) → ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) |
155 | 154 | ralrimivva 3124 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) |
156 | 1 | fvexi 6797 |
. . . . . . . . . 10
⊢ 𝑊 ∈ V |
157 | | erex 8531 |
. . . . . . . . . 10
⊢
({〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} Er 𝑊 → (𝑊 ∈ V → {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} ∈ V)) |
158 | 25, 156, 157 | mpisyl 21 |
. . . . . . . . 9
⊢ (𝜑 → {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} ∈ V) |
159 | | ereq1 8514 |
. . . . . . . . . . 11
⊢ (𝑟 = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} → (𝑟 Er 𝑊 ↔ {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} Er 𝑊)) |
160 | | breq 5077 |
. . . . . . . . . . . . 13
⊢ (𝑟 = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} → (𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ↔ 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))) |
161 | 160 | 2ralbidv 3130 |
. . . . . . . . . . . 12
⊢ (𝑟 = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} → (∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ↔
∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))) |
162 | 161 | 2ralbidv 3130 |
. . . . . . . . . . 11
⊢ (𝑟 = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} → (∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ↔
∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))) |
163 | 159, 162 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑟 = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} → ((𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) ↔
({〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)))) |
164 | 163 | elabg 3608 |
. . . . . . . . 9
⊢
({〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} ∈ V → ({〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))} ↔
({〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)))) |
165 | 158, 164 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ({〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))} ↔
({〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)))) |
166 | 25, 155, 165 | mpbir2and 710 |
. . . . . . 7
⊢ (𝜑 → {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))}) |
167 | | intss1 4895 |
. . . . . . 7
⊢
({〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))} → ∩ {𝑟
∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))} ⊆
{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))}) |
168 | 166, 167 | syl 17 |
. . . . . 6
⊢ (𝜑 → ∩ {𝑟
∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))} ⊆
{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))}) |
169 | 3, 168 | eqsstrid 3970 |
. . . . 5
⊢ (𝜑 → ∼ ⊆
{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))}) |
170 | 169 | ssbrd 5118 |
. . . 4
⊢ (𝜑 → (𝐴 ∼ 𝐶 → 𝐴{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))}𝐶)) |
171 | 170 | imp 407 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∼ 𝐶) → 𝐴{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))}𝐶) |
172 | 1, 2 | efger 19333 |
. . . . . 6
⊢ ∼ Er
𝑊 |
173 | | errel 8516 |
. . . . . 6
⊢ ( ∼ Er
𝑊 → Rel ∼
) |
174 | 172, 173 | mp1i 13 |
. . . . 5
⊢ (𝜑 → Rel ∼ ) |
175 | | brrelex12 5640 |
. . . . 5
⊢ ((Rel
∼
∧ 𝐴 ∼ 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V)) |
176 | 174, 175 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∼ 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V)) |
177 | | preq12 4672 |
. . . . . . 7
⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐶) → {𝑢, 𝑣} = {𝐴, 𝐶}) |
178 | 177 | sseq1d 3953 |
. . . . . 6
⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐶) → ({𝑢, 𝑣} ⊆ 𝑊 ↔ {𝐴, 𝐶} ⊆ 𝑊)) |
179 | | coeq2 5770 |
. . . . . . . 8
⊢ (𝑢 = 𝐴 → (𝑇 ∘ 𝑢) = (𝑇 ∘ 𝐴)) |
180 | 179 | oveq2d 7300 |
. . . . . . 7
⊢ (𝑢 = 𝐴 → (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝐴))) |
181 | | coeq2 5770 |
. . . . . . . 8
⊢ (𝑣 = 𝐶 → (𝑇 ∘ 𝑣) = (𝑇 ∘ 𝐶)) |
182 | 181 | oveq2d 7300 |
. . . . . . 7
⊢ (𝑣 = 𝐶 → (𝐻 Σg (𝑇 ∘ 𝑣)) = (𝐻 Σg (𝑇 ∘ 𝐶))) |
183 | 180, 182 | eqeqan12d 2753 |
. . . . . 6
⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐶) → ((𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)) ↔ (𝐻 Σg (𝑇 ∘ 𝐴)) = (𝐻 Σg (𝑇 ∘ 𝐶)))) |
184 | 178, 183 | anbi12d 631 |
. . . . 5
⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐶) → (({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))) ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝐴)) = (𝐻 Σg (𝑇 ∘ 𝐶))))) |
185 | 184, 151 | brabga 5448 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))}𝐶 ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝐴)) = (𝐻 Σg (𝑇 ∘ 𝐶))))) |
186 | 176, 185 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∼ 𝐶) → (𝐴{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))}𝐶 ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝐴)) = (𝐻 Σg (𝑇 ∘ 𝐶))))) |
187 | 171, 186 | mpbid 231 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∼ 𝐶) → ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝐴)) = (𝐻 Σg (𝑇 ∘ 𝐶)))) |
188 | 187 | simprd 496 |
1
⊢ ((𝜑 ∧ 𝐴 ∼ 𝐶) → (𝐻 Σg (𝑇 ∘ 𝐴)) = (𝐻 Σg (𝑇 ∘ 𝐶))) |