Step | Hyp | Ref
| Expression |
1 | | frgpup.w |
. . . . . . 7
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
2 | | frgpup.r |
. . . . . . 7
⊢ ∼ = (
~FG ‘𝐼) |
3 | 1, 2 | efgval 18915 |
. . . . . 6
⊢ ∼ =
∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))} |
4 | | coeq2 5703 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑣 → (𝑇 ∘ 𝑢) = (𝑇 ∘ 𝑣)) |
5 | 4 | oveq2d 7171 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑣 → (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))) |
6 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
{〈𝑢, 𝑣〉 ∣ (𝐻 Σg
(𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} = {〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} |
7 | 5, 6 | eqer 8339 |
. . . . . . . . . . 11
⊢
{〈𝑢, 𝑣〉 ∣ (𝐻 Σg
(𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} Er V |
8 | 7 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → {〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} Er V) |
9 | | ssv 3918 |
. . . . . . . . . . 11
⊢ 𝑊 ⊆ V |
10 | 9 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ⊆ V) |
11 | 8, 10 | erinxp 8386 |
. . . . . . . . 9
⊢ (𝜑 → ({〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊) |
12 | | df-xp 5533 |
. . . . . . . . . . . . 13
⊢ (𝑊 × 𝑊) = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊)} |
13 | 12 | ineq1i 4115 |
. . . . . . . . . . . 12
⊢ ((𝑊 × 𝑊) ∩ {〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))}) = ({〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊)} ∩ {〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))}) |
14 | | incom 4108 |
. . . . . . . . . . . 12
⊢ ((𝑊 × 𝑊) ∩ {〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))}) = ({〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} ∩ (𝑊 × 𝑊)) |
15 | | inopab 5675 |
. . . . . . . . . . . 12
⊢
({〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊)} ∩ {〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))}) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊) ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} |
16 | 13, 14, 15 | 3eqtr3i 2789 |
. . . . . . . . . . 11
⊢
({〈𝑢, 𝑣〉 ∣ (𝐻 Σg
(𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} ∩ (𝑊 × 𝑊)) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊) ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} |
17 | | vex 3413 |
. . . . . . . . . . . . . 14
⊢ 𝑢 ∈ V |
18 | | vex 3413 |
. . . . . . . . . . . . . 14
⊢ 𝑣 ∈ V |
19 | 17, 18 | prss 4713 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊) ↔ {𝑢, 𝑣} ⊆ 𝑊) |
20 | 19 | anbi1i 626 |
. . . . . . . . . . . 12
⊢ (((𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊) ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))) ↔ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))) |
21 | 20 | opabbii 5102 |
. . . . . . . . . . 11
⊢
{〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊) ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} |
22 | 16, 21 | eqtri 2781 |
. . . . . . . . . 10
⊢
({〈𝑢, 𝑣〉 ∣ (𝐻 Σg
(𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} ∩ (𝑊 × 𝑊)) = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} |
23 | | ereq1 8311 |
. . . . . . . . . 10
⊢
(({〈𝑢, 𝑣〉 ∣ (𝐻 Σg
(𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} ∩ (𝑊 × 𝑊)) = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} → (({〈𝑢, 𝑣〉 ∣ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊 ↔ {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} Er 𝑊)) |
24 | 22, 23 | ax-mp 5 |
. . . . . . . . 9
⊢
(({〈𝑢, 𝑣〉 ∣ (𝐻 Σg
(𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊 ↔ {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} Er 𝑊) |
25 | 11, 24 | sylib 221 |
. . . . . . . 8
⊢ (𝜑 → {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} Er 𝑊) |
26 | | simplrl 776 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝑥 ∈ 𝑊) |
27 | | fviss 6733 |
. . . . . . . . . . . . . . 15
⊢ ( I
‘Word (𝐼 ×
2o)) ⊆ Word (𝐼 × 2o) |
28 | 1, 27 | eqsstri 3928 |
. . . . . . . . . . . . . 14
⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
29 | 28, 26 | sseldi 3892 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝑥 ∈ Word (𝐼 × 2o)) |
30 | | opelxpi 5564 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o) → 〈𝑎, 𝑏〉 ∈ (𝐼 × 2o)) |
31 | 30 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 〈𝑎, 𝑏〉 ∈ (𝐼 × 2o)) |
32 | | simprl 770 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝑎 ∈ 𝐼) |
33 | | 2oconcl 8143 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ 2o →
(1o ∖ 𝑏)
∈ 2o) |
34 | 33 | ad2antll 728 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (1o
∖ 𝑏) ∈
2o) |
35 | 32, 34 | opelxpd 5565 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 〈𝑎, (1o ∖ 𝑏)〉 ∈ (𝐼 ×
2o)) |
36 | 31, 35 | s2cld 14285 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) →
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉 ∈ Word (𝐼 ×
2o)) |
37 | | splcl 14166 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Word (𝐼 × 2o) ∧
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉 ∈ Word (𝐼 × 2o)) →
(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈ Word
(𝐼 ×
2o)) |
38 | 29, 36, 37 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈ Word
(𝐼 ×
2o)) |
39 | 1 | efgrcl 18913 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
40 | 26, 39 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
41 | 40 | simprd 499 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝑊 = Word (𝐼 × 2o)) |
42 | 38, 41 | eleqtrrd 2855 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈ 𝑊) |
43 | | pfxcl 14091 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o)) |
44 | 29, 43 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o)) |
45 | | frgpup.b |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐵 = (Base‘𝐻) |
46 | | frgpup.n |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑁 = (invg‘𝐻) |
47 | | frgpup.t |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
48 | | frgpup.h |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐻 ∈ Grp) |
49 | | frgpup.i |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
50 | | frgpup.a |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
51 | 45, 46, 47, 48, 49, 50 | frgpuptf 18968 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
52 | 51 | ad2antrr 725 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝑇:(𝐼 × 2o)⟶𝐵) |
53 | | ccatco 14249 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉 ∈ Word (𝐼 × 2o) ∧
𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉))) |
54 | 44, 36, 52, 53 | syl3anc 1368 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉))) |
55 | 54 | oveq2d 7171 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
(𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉))) = (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)))) |
56 | 48 | ad2antrr 725 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝐻 ∈ Grp) |
57 | | grpmnd 18181 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐻 ∈ Grp → 𝐻 ∈ Mnd) |
58 | 56, 57 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝐻 ∈ Mnd) |
59 | | wrdco 14245 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵) |
60 | 44, 52, 59 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵) |
61 | | wrdco 14245 |
. . . . . . . . . . . . . . . . 17
⊢
((〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉 ∈ Word (𝐼 × 2o) ∧
𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ∈ Word 𝐵) |
62 | 36, 52, 61 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ∈ Word 𝐵) |
63 | | eqid 2758 |
. . . . . . . . . . . . . . . . 17
⊢
(+g‘𝐻) = (+g‘𝐻) |
64 | 45, 63 | gsumccat 18077 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵 ∧ (𝑇 ∘ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)))) |
65 | 58, 60, 62, 64 | syl3anc 1368 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)))) |
66 | 52, 31, 35 | s2co 14334 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) = 〈“(𝑇‘〈𝑎, 𝑏〉)(𝑇‘〈𝑎, (1o ∖ 𝑏)〉)”〉) |
67 | | df-ov 7158 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎𝑇𝑏) = (𝑇‘〈𝑎, 𝑏〉) |
68 | 67 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑎𝑇𝑏) = (𝑇‘〈𝑎, 𝑏〉)) |
69 | 67 | fveq2i 6665 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁‘(𝑎𝑇𝑏)) = (𝑁‘(𝑇‘〈𝑎, 𝑏〉)) |
70 | | df-ov 7158 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎(𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)𝑏) = ((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘〈𝑎, 𝑏〉) |
71 | | eqid 2758 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
72 | 71 | efgmval 18910 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o) → (𝑎(𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)𝑏) = 〈𝑎, (1o ∖ 𝑏)〉) |
73 | 70, 72 | syl5eqr 2807 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o) → ((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘〈𝑎, 𝑏〉) = 〈𝑎, (1o ∖ 𝑏)〉) |
74 | 73 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘〈𝑎, 𝑏〉) = 〈𝑎, (1o ∖ 𝑏)〉) |
75 | 74 | fveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇‘((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘〈𝑎, 𝑏〉)) = (𝑇‘〈𝑎, (1o ∖ 𝑏)〉)) |
76 | 45, 46, 47, 48, 49, 50, 71 | frgpuptinv 18969 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 〈𝑎, 𝑏〉 ∈ (𝐼 × 2o)) → (𝑇‘((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘〈𝑎, 𝑏〉)) = (𝑁‘(𝑇‘〈𝑎, 𝑏〉))) |
77 | 30, 76 | sylan2 595 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇‘((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘〈𝑎, 𝑏〉)) = (𝑁‘(𝑇‘〈𝑎, 𝑏〉))) |
78 | 77 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇‘((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘〈𝑎, 𝑏〉)) = (𝑁‘(𝑇‘〈𝑎, 𝑏〉))) |
79 | 75, 78 | eqtr3d 2795 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇‘〈𝑎, (1o ∖ 𝑏)〉) = (𝑁‘(𝑇‘〈𝑎, 𝑏〉))) |
80 | 69, 79 | eqtr4id 2812 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑁‘(𝑎𝑇𝑏)) = (𝑇‘〈𝑎, (1o ∖ 𝑏)〉)) |
81 | 68, 80 | s2eqd 14277 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) →
〈“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”〉 = 〈“(𝑇‘〈𝑎, 𝑏〉)(𝑇‘〈𝑎, (1o ∖ 𝑏)〉)”〉) |
82 | 66, 81 | eqtr4d 2796 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) = 〈“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”〉) |
83 | 82 | oveq2d 7171 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
(𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) = (𝐻 Σg
〈“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”〉)) |
84 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝑏 ∈
2o) |
85 | 52, 32, 84 | fovrnd 7321 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑎𝑇𝑏) ∈ 𝐵) |
86 | 45, 46 | grpinvcl 18223 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐻 ∈ Grp ∧ (𝑎𝑇𝑏) ∈ 𝐵) → (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵) |
87 | 56, 85, 86 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵) |
88 | 45, 63 | gsumws2 18078 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐻 ∈ Mnd ∧ (𝑎𝑇𝑏) ∈ 𝐵 ∧ (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵) → (𝐻 Σg
〈“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”〉) = ((𝑎𝑇𝑏)(+g‘𝐻)(𝑁‘(𝑎𝑇𝑏)))) |
89 | 58, 85, 87, 88 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
〈“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”〉) = ((𝑎𝑇𝑏)(+g‘𝐻)(𝑁‘(𝑎𝑇𝑏)))) |
90 | | eqid 2758 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(0g‘𝐻) = (0g‘𝐻) |
91 | 45, 63, 90, 46 | grprinv 18225 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐻 ∈ Grp ∧ (𝑎𝑇𝑏) ∈ 𝐵) → ((𝑎𝑇𝑏)(+g‘𝐻)(𝑁‘(𝑎𝑇𝑏))) = (0g‘𝐻)) |
92 | 56, 85, 91 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝑎𝑇𝑏)(+g‘𝐻)(𝑁‘(𝑎𝑇𝑏))) = (0g‘𝐻)) |
93 | 83, 89, 92 | 3eqtrd 2797 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
(𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) =
(0g‘𝐻)) |
94 | 93 | oveq2d 7171 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝐻 Σg
(𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(0g‘𝐻))) |
95 | 45 | gsumwcl 18074 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵) → (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵) |
96 | 58, 60, 95 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
(𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵) |
97 | 45, 63, 90 | grprid 18206 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻 ∈ Grp ∧ (𝐻 Σg
(𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(0g‘𝐻)) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))) |
98 | 56, 96, 97 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝐻 Σg
(𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(0g‘𝐻)) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))) |
99 | 94, 98 | eqtrd 2793 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝐻 Σg
(𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉))) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))) |
100 | 55, 65, 99 | 3eqtrrd 2798 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
(𝑇 ∘ (𝑥 prefix 𝑛))) = (𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)))) |
101 | 100 | oveq1d 7170 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝐻 Σg
(𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))))) |
102 | | swrdcl 14059 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 substr 〈𝑛, (♯‘𝑥)〉) ∈ Word (𝐼 × 2o)) |
103 | 29, 102 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑥 substr 〈𝑛, (♯‘𝑥)〉) ∈ Word (𝐼 × 2o)) |
104 | | wrdco 14245 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 substr 〈𝑛, (♯‘𝑥)〉) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)) ∈ Word 𝐵) |
105 | 103, 52, 104 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)) ∈ Word 𝐵) |
106 | 45, 63 | gsumccat 18077 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵 ∧ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))))) |
107 | 58, 60, 105, 106 | syl3anc 1368 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))))) |
108 | | ccatcl 13978 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉 ∈ Word (𝐼 × 2o)) →
((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ∈ Word (𝐼 ×
2o)) |
109 | 44, 36, 108 | syl2anc 587 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ∈ Word (𝐼 ×
2o)) |
110 | | wrdco 14245 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ∈ Word (𝐼 × 2o) ∧
𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ∈ Word 𝐵) |
111 | 109, 52, 110 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ∈ Word 𝐵) |
112 | 45, 63 | gsumccat 18077 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 ∈ Mnd ∧ (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ∈ Word 𝐵 ∧ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))))) |
113 | 58, 111, 105, 112 | syl3anc 1368 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
((𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)))(+g‘𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))))) |
114 | 101, 107,
113 | 3eqtr4d 2803 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) = (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))))) |
115 | | simplrr 777 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝑛 ∈
(0...(♯‘𝑥))) |
116 | | lencl 13937 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ Word (𝐼 × 2o) →
(♯‘𝑥) ∈
ℕ0) |
117 | 29, 116 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) →
(♯‘𝑥) ∈
ℕ0) |
118 | | nn0uz 12325 |
. . . . . . . . . . . . . . . . . . 19
⊢
ℕ0 = (ℤ≥‘0) |
119 | 117, 118 | eleqtrdi 2862 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) →
(♯‘𝑥) ∈
(ℤ≥‘0)) |
120 | | eluzfz2 12969 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑥)
∈ (ℤ≥‘0) → (♯‘𝑥) ∈
(0...(♯‘𝑥))) |
121 | 119, 120 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) →
(♯‘𝑥) ∈
(0...(♯‘𝑥))) |
122 | | ccatpfx 14115 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑛 ∈
(0...(♯‘𝑥))
∧ (♯‘𝑥)
∈ (0...(♯‘𝑥))) → ((𝑥 prefix 𝑛) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)) = (𝑥 prefix (♯‘𝑥))) |
123 | 29, 115, 121, 122 | syl3anc 1368 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)) = (𝑥 prefix (♯‘𝑥))) |
124 | | pfxid 14098 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 prefix (♯‘𝑥)) = 𝑥) |
125 | 29, 124 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑥 prefix (♯‘𝑥)) = 𝑥) |
126 | 123, 125 | eqtrd 2793 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)) = 𝑥) |
127 | 126 | coeq2d 5707 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))) = (𝑇 ∘ 𝑥)) |
128 | | ccatco 14249 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ (𝑥 substr 〈𝑛, (♯‘𝑥)〉) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) |
129 | 44, 103, 52, 128 | syl3anc 1368 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) |
130 | 127, 129 | eqtr3d 2795 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ 𝑥) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) |
131 | 130 | oveq2d 7171 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
(𝑇 ∘ 𝑥)) = (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))))) |
132 | | splval 14165 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑊 ∧ (𝑛 ∈ (0...(♯‘𝑥)) ∧ 𝑛 ∈ (0...(♯‘𝑥)) ∧
〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉 ∈ Word (𝐼 × 2o))) →
(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) = (((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))) |
133 | 26, 115, 115, 36, 132 | syl13anc 1369 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) = (((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))) |
134 | 133 | coeq2d 5707 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) = (𝑇 ∘ (((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) |
135 | | ccatco 14249 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ∈ Word (𝐼 × 2o) ∧
(𝑥 substr 〈𝑛, (♯‘𝑥)〉) ∈ Word (𝐼 × 2o) ∧
𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) |
136 | 109, 103,
52, 135 | syl3anc 1368 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ (((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉) ++ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) |
137 | 134, 136 | eqtrd 2793 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉)))) |
138 | 137 | oveq2d 7171 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
(𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))) = (𝐻 Σg
((𝑇 ∘ ((𝑥 prefix 𝑛) ++ 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉)) ++ (𝑇 ∘ (𝑥 substr 〈𝑛, (♯‘𝑥)〉))))) |
139 | 114, 131,
138 | 3eqtr4d 2803 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → (𝐻 Σg
(𝑇 ∘ 𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)))) |
140 | | vex 3413 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
141 | | ovex 7188 |
. . . . . . . . . . . 12
⊢ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈
V |
142 | | eleq1 2839 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑥 → (𝑢 ∈ 𝑊 ↔ 𝑥 ∈ 𝑊)) |
143 | | eleq1 2839 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) → (𝑣 ∈ 𝑊 ↔ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈ 𝑊)) |
144 | 142, 143 | bi2anan9 638 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑥 ∧ 𝑣 = (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) → ((𝑢 ∈ 𝑊 ∧ 𝑣 ∈ 𝑊) ↔ (𝑥 ∈ 𝑊 ∧ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈ 𝑊))) |
145 | 19, 144 | bitr3id 288 |
. . . . . . . . . . . . 13
⊢ ((𝑢 = 𝑥 ∧ 𝑣 = (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) → ({𝑢, 𝑣} ⊆ 𝑊 ↔ (𝑥 ∈ 𝑊 ∧ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈ 𝑊))) |
146 | | coeq2 5703 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑥 → (𝑇 ∘ 𝑢) = (𝑇 ∘ 𝑥)) |
147 | 146 | oveq2d 7171 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑥 → (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑥))) |
148 | | coeq2 5703 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) → (𝑇 ∘ 𝑣) = (𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))) |
149 | 148 | oveq2d 7171 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) → (𝐻 Σg
(𝑇 ∘ 𝑣)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)))) |
150 | 147, 149 | eqeqan12d 2775 |
. . . . . . . . . . . . 13
⊢ ((𝑢 = 𝑥 ∧ 𝑣 = (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) → ((𝐻 Σg
(𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)) ↔ (𝐻 Σg (𝑇 ∘ 𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))))) |
151 | 145, 150 | anbi12d 633 |
. . . . . . . . . . . 12
⊢ ((𝑢 = 𝑥 ∧ 𝑣 = (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) → (({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))) ↔ ((𝑥 ∈ 𝑊 ∧ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈ 𝑊) ∧ (𝐻 Σg (𝑇 ∘ 𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)))))) |
152 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} |
153 | 140, 141,
151, 152 | braba 5397 |
. . . . . . . . . . 11
⊢ (𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ↔ ((𝑥 ∈ 𝑊 ∧ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ∈ 𝑊) ∧ (𝐻 Σg (𝑇 ∘ 𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))))) |
154 | 26, 42, 139, 153 | syl21anbrc 1341 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o)) → 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) |
155 | 154 | ralrimivva 3120 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥)))) → ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) |
156 | 155 | ralrimivva 3120 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) |
157 | 1 | fvexi 6676 |
. . . . . . . . . 10
⊢ 𝑊 ∈ V |
158 | | erex 8328 |
. . . . . . . . . 10
⊢
({〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} Er 𝑊 → (𝑊 ∈ V → {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} ∈ V)) |
159 | 25, 157, 158 | mpisyl 21 |
. . . . . . . . 9
⊢ (𝜑 → {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} ∈ V) |
160 | | ereq1 8311 |
. . . . . . . . . . 11
⊢ (𝑟 = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} → (𝑟 Er 𝑊 ↔ {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} Er 𝑊)) |
161 | | breq 5037 |
. . . . . . . . . . . . 13
⊢ (𝑟 = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} → (𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ↔ 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))) |
162 | 161 | 2ralbidv 3128 |
. . . . . . . . . . . 12
⊢ (𝑟 = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} → (∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ↔
∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))) |
163 | 162 | 2ralbidv 3128 |
. . . . . . . . . . 11
⊢ (𝑟 = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} → (∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉) ↔
∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))) |
164 | 160, 163 | anbi12d 633 |
. . . . . . . . . 10
⊢ (𝑟 = {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} → ((𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)) ↔
({〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)))) |
165 | 164 | elabg 3589 |
. . . . . . . . 9
⊢
({〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} ∈ V → ({〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))} ↔
({〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)))) |
166 | 159, 165 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ({〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))} ↔
({〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉)))) |
167 | 25, 156, 166 | mpbir2and 712 |
. . . . . . 7
⊢ (𝜑 → {〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))}) |
168 | | intss1 4856 |
. . . . . . 7
⊢
({〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))} → ∩ {𝑟
∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))} ⊆
{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))}) |
169 | 167, 168 | syl 17 |
. . . . . 6
⊢ (𝜑 → ∩ {𝑟
∣ (𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑎, 𝑏〉〈𝑎, (1o ∖ 𝑏)〉”〉〉))} ⊆
{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))}) |
170 | 3, 169 | eqsstrid 3942 |
. . . . 5
⊢ (𝜑 → ∼ ⊆
{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))}) |
171 | 170 | ssbrd 5078 |
. . . 4
⊢ (𝜑 → (𝐴 ∼ 𝐶 → 𝐴{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))}𝐶)) |
172 | 171 | imp 410 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∼ 𝐶) → 𝐴{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))}𝐶) |
173 | 1, 2 | efger 18916 |
. . . . . 6
⊢ ∼ Er
𝑊 |
174 | | errel 8313 |
. . . . . 6
⊢ ( ∼ Er
𝑊 → Rel ∼
) |
175 | 173, 174 | mp1i 13 |
. . . . 5
⊢ (𝜑 → Rel ∼ ) |
176 | | brrelex12 5577 |
. . . . 5
⊢ ((Rel
∼
∧ 𝐴 ∼ 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V)) |
177 | 175, 176 | sylan 583 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∼ 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V)) |
178 | | preq12 4631 |
. . . . . . 7
⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐶) → {𝑢, 𝑣} = {𝐴, 𝐶}) |
179 | 178 | sseq1d 3925 |
. . . . . 6
⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐶) → ({𝑢, 𝑣} ⊆ 𝑊 ↔ {𝐴, 𝐶} ⊆ 𝑊)) |
180 | | coeq2 5703 |
. . . . . . . 8
⊢ (𝑢 = 𝐴 → (𝑇 ∘ 𝑢) = (𝑇 ∘ 𝐴)) |
181 | 180 | oveq2d 7171 |
. . . . . . 7
⊢ (𝑢 = 𝐴 → (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝐴))) |
182 | | coeq2 5703 |
. . . . . . . 8
⊢ (𝑣 = 𝐶 → (𝑇 ∘ 𝑣) = (𝑇 ∘ 𝐶)) |
183 | 182 | oveq2d 7171 |
. . . . . . 7
⊢ (𝑣 = 𝐶 → (𝐻 Σg (𝑇 ∘ 𝑣)) = (𝐻 Σg (𝑇 ∘ 𝐶))) |
184 | 181, 183 | eqeqan12d 2775 |
. . . . . 6
⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐶) → ((𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)) ↔ (𝐻 Σg (𝑇 ∘ 𝐴)) = (𝐻 Σg (𝑇 ∘ 𝐶)))) |
185 | 179, 184 | anbi12d 633 |
. . . . 5
⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐶) → (({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣))) ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝐴)) = (𝐻 Σg (𝑇 ∘ 𝐶))))) |
186 | 185, 152 | brabga 5394 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))}𝐶 ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝐴)) = (𝐻 Σg (𝑇 ∘ 𝐶))))) |
187 | 177, 186 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∼ 𝐶) → (𝐴{〈𝑢, 𝑣〉 ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝑢)) = (𝐻 Σg (𝑇 ∘ 𝑣)))}𝐶 ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝐴)) = (𝐻 Σg (𝑇 ∘ 𝐶))))) |
188 | 172, 187 | mpbid 235 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∼ 𝐶) → ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇 ∘ 𝐴)) = (𝐻 Σg (𝑇 ∘ 𝐶)))) |
189 | 188 | simprd 499 |
1
⊢ ((𝜑 ∧ 𝐴 ∼ 𝐶) → (𝐻 Σg (𝑇 ∘ 𝐴)) = (𝐻 Σg (𝑇 ∘ 𝐶))) |