MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpuplem Structured version   Visualization version   GIF version

Theorem frgpuplem 18970
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpup.r = ( ~FG𝐼)
Assertion
Ref Expression
frgpuplem ((𝜑𝐴 𝐶) → (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝑦,𝐵,𝑧   𝜑,𝑦,𝑧   𝑦,𝐼,𝑧
Allowed substitution hints:   𝐶(𝑦,𝑧)   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝐻(𝑦,𝑧)   𝑉(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem frgpuplem
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑛 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup.w . . . . . . 7 𝑊 = ( I ‘Word (𝐼 × 2o))
2 frgpup.r . . . . . . 7 = ( ~FG𝐼)
31, 2efgval 18915 . . . . . 6 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))}
4 coeq2 5703 . . . . . . . . . . . . 13 (𝑢 = 𝑣 → (𝑇𝑢) = (𝑇𝑣))
54oveq2d 7171 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))
6 eqid 2758 . . . . . . . . . . . 12 {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} = {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}
75, 6eqer 8339 . . . . . . . . . . 11 {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} Er V
87a1i 11 . . . . . . . . . 10 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} Er V)
9 ssv 3918 . . . . . . . . . . 11 𝑊 ⊆ V
109a1i 11 . . . . . . . . . 10 (𝜑𝑊 ⊆ V)
118, 10erinxp 8386 . . . . . . . . 9 (𝜑 → ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊)
12 df-xp 5533 . . . . . . . . . . . . 13 (𝑊 × 𝑊) = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)}
1312ineq1i 4115 . . . . . . . . . . . 12 ((𝑊 × 𝑊) ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = ({⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)} ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))})
14 incom 4108 . . . . . . . . . . . 12 ((𝑊 × 𝑊) ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊))
15 inopab 5675 . . . . . . . . . . . 12 ({⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)} ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
1613, 14, 153eqtr3i 2789 . . . . . . . . . . 11 ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
17 vex 3413 . . . . . . . . . . . . . 14 𝑢 ∈ V
18 vex 3413 . . . . . . . . . . . . . 14 𝑣 ∈ V
1917, 18prss 4713 . . . . . . . . . . . . 13 ((𝑢𝑊𝑣𝑊) ↔ {𝑢, 𝑣} ⊆ 𝑊)
2019anbi1i 626 . . . . . . . . . . . 12 (((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))))
2120opabbii 5102 . . . . . . . . . . 11 {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
2216, 21eqtri 2781 . . . . . . . . . 10 ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
23 ereq1 8311 . . . . . . . . . 10 (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊))
2422, 23ax-mp 5 . . . . . . . . 9 (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊)
2511, 24sylib 221 . . . . . . . 8 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊)
26 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑥𝑊)
27 fviss 6733 . . . . . . . . . . . . . . 15 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
281, 27eqsstri 3928 . . . . . . . . . . . . . 14 𝑊 ⊆ Word (𝐼 × 2o)
2928, 26sseldi 3892 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
30 opelxpi 5564 . . . . . . . . . . . . . . 15 ((𝑎𝐼𝑏 ∈ 2o) → ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2o))
3130adantl 485 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2o))
32 simprl 770 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑎𝐼)
33 2oconcl 8143 . . . . . . . . . . . . . . . 16 (𝑏 ∈ 2o → (1o𝑏) ∈ 2o)
3433ad2antll 728 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (1o𝑏) ∈ 2o)
3532, 34opelxpd 5565 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ⟨𝑎, (1o𝑏)⟩ ∈ (𝐼 × 2o))
3631, 35s2cld 14285 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o))
37 splcl 14166 . . . . . . . . . . . . 13 ((𝑥 ∈ Word (𝐼 × 2o) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ Word (𝐼 × 2o))
3829, 36, 37syl2anc 587 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ Word (𝐼 × 2o))
391efgrcl 18913 . . . . . . . . . . . . . 14 (𝑥𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
4026, 39syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
4140simprd 499 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑊 = Word (𝐼 × 2o))
4238, 41eleqtrrd 2855 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊)
43 pfxcl 14091 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o))
4429, 43syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o))
45 frgpup.b . . . . . . . . . . . . . . . . . . 19 𝐵 = (Base‘𝐻)
46 frgpup.n . . . . . . . . . . . . . . . . . . 19 𝑁 = (invg𝐻)
47 frgpup.t . . . . . . . . . . . . . . . . . . 19 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
48 frgpup.h . . . . . . . . . . . . . . . . . . 19 (𝜑𝐻 ∈ Grp)
49 frgpup.i . . . . . . . . . . . . . . . . . . 19 (𝜑𝐼𝑉)
50 frgpup.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:𝐼𝐵)
5145, 46, 47, 48, 49, 50frgpuptf 18968 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
5251ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑇:(𝐼 × 2o)⟶𝐵)
53 ccatco 14249 . . . . . . . . . . . . . . . . 17 (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))
5444, 36, 52, 53syl3anc 1368 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))
5554oveq2d 7171 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))))
5648ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝐻 ∈ Grp)
57 grpmnd 18181 . . . . . . . . . . . . . . . . 17 (𝐻 ∈ Grp → 𝐻 ∈ Mnd)
5856, 57syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝐻 ∈ Mnd)
59 wrdco 14245 . . . . . . . . . . . . . . . . 17 (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵)
6044, 52, 59syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵)
61 wrdco 14245 . . . . . . . . . . . . . . . . 17 ((⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word 𝐵)
6236, 52, 61syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word 𝐵)
63 eqid 2758 . . . . . . . . . . . . . . . . 17 (+g𝐻) = (+g𝐻)
6445, 63gsumccat 18077 . . . . . . . . . . . . . . . 16 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵 ∧ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))))
6558, 60, 62, 64syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))))
6652, 31, 35s2co 14334 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) = ⟨“(𝑇‘⟨𝑎, 𝑏⟩)(𝑇‘⟨𝑎, (1o𝑏)⟩)”⟩)
67 df-ov 7158 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎𝑇𝑏) = (𝑇‘⟨𝑎, 𝑏⟩)
6867a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑎𝑇𝑏) = (𝑇‘⟨𝑎, 𝑏⟩))
6967fveq2i 6665 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁‘(𝑎𝑇𝑏)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩))
70 df-ov 7158 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎(𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)𝑏) = ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)
71 eqid 2758 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
7271efgmval 18910 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝐼𝑏 ∈ 2o) → (𝑎(𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)𝑏) = ⟨𝑎, (1o𝑏)⟩)
7370, 72syl5eqr 2807 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝐼𝑏 ∈ 2o) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩) = ⟨𝑎, (1o𝑏)⟩)
7473adantl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩) = ⟨𝑎, (1o𝑏)⟩)
7574fveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑇‘⟨𝑎, (1o𝑏)⟩))
7645, 46, 47, 48, 49, 50, 71frgpuptinv 18969 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2o)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7730, 76sylan2 595 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7877adantlr 714 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7975, 78eqtr3d 2795 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘⟨𝑎, (1o𝑏)⟩) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
8069, 79eqtr4id 2812 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑁‘(𝑎𝑇𝑏)) = (𝑇‘⟨𝑎, (1o𝑏)⟩))
8168, 80s2eqd 14277 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩ = ⟨“(𝑇‘⟨𝑎, 𝑏⟩)(𝑇‘⟨𝑎, (1o𝑏)⟩)”⟩)
8266, 81eqtr4d 2796 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) = ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩)
8382oveq2d 7171 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) = (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩))
84 simprr 772 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑏 ∈ 2o)
8552, 32, 84fovrnd 7321 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑎𝑇𝑏) ∈ 𝐵)
8645, 46grpinvcl 18223 . . . . . . . . . . . . . . . . . . . 20 ((𝐻 ∈ Grp ∧ (𝑎𝑇𝑏) ∈ 𝐵) → (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵)
8756, 85, 86syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵)
8845, 63gsumws2 18078 . . . . . . . . . . . . . . . . . . 19 ((𝐻 ∈ Mnd ∧ (𝑎𝑇𝑏) ∈ 𝐵 ∧ (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵) → (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩) = ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))))
8958, 85, 87, 88syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩) = ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))))
90 eqid 2758 . . . . . . . . . . . . . . . . . . . 20 (0g𝐻) = (0g𝐻)
9145, 63, 90, 46grprinv 18225 . . . . . . . . . . . . . . . . . . 19 ((𝐻 ∈ Grp ∧ (𝑎𝑇𝑏) ∈ 𝐵) → ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))) = (0g𝐻))
9256, 85, 91syl2anc 587 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))) = (0g𝐻))
9383, 89, 923eqtrd 2797 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) = (0g𝐻))
9493oveq2d 7171 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(0g𝐻)))
9545gsumwcl 18074 . . . . . . . . . . . . . . . . . 18 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵) → (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵)
9658, 60, 95syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵)
9745, 63, 90grprid 18206 . . . . . . . . . . . . . . . . 17 ((𝐻 ∈ Grp ∧ (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(0g𝐻)) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))))
9856, 96, 97syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(0g𝐻)) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))))
9994, 98eqtrd 2793 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))))
10055, 65, 993eqtrrd 2798 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) = (𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))))
101100oveq1d 7170 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
102 swrdcl 14059 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o))
10329, 102syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o))
104 wrdco 14245 . . . . . . . . . . . . . . 15 (((𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) ∈ Word 𝐵)
105103, 52, 104syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) ∈ Word 𝐵)
10645, 63gsumccat 18077 . . . . . . . . . . . . . 14 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵 ∧ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
10758, 60, 105, 106syl3anc 1368 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
108 ccatcl 13978 . . . . . . . . . . . . . . . 16 (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o)) → ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word (𝐼 × 2o))
10944, 36, 108syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word (𝐼 × 2o))
110 wrdco 14245 . . . . . . . . . . . . . . 15 ((((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ∈ Word 𝐵)
111109, 52, 110syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ∈ Word 𝐵)
11245, 63gsumccat 18077 . . . . . . . . . . . . . 14 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ∈ Word 𝐵 ∧ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
11358, 111, 105, 112syl3anc 1368 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
114101, 107, 1133eqtr4d 2803 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
115 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑛 ∈ (0...(♯‘𝑥)))
116 lencl 13937 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ Word (𝐼 × 2o) → (♯‘𝑥) ∈ ℕ0)
11729, 116syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (♯‘𝑥) ∈ ℕ0)
118 nn0uz 12325 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
119117, 118eleqtrdi 2862 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (♯‘𝑥) ∈ (ℤ‘0))
120 eluzfz2 12969 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑥) ∈ (ℤ‘0) → (♯‘𝑥) ∈ (0...(♯‘𝑥)))
121119, 120syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (♯‘𝑥) ∈ (0...(♯‘𝑥)))
122 ccatpfx 14115 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑛 ∈ (0...(♯‘𝑥)) ∧ (♯‘𝑥) ∈ (0...(♯‘𝑥))) → ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) = (𝑥 prefix (♯‘𝑥)))
12329, 115, 121, 122syl3anc 1368 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) = (𝑥 prefix (♯‘𝑥)))
124 pfxid 14098 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 prefix (♯‘𝑥)) = 𝑥)
12529, 124syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 prefix (♯‘𝑥)) = 𝑥)
126123, 125eqtrd 2793 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) = 𝑥)
127126coeq2d 5707 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = (𝑇𝑥))
128 ccatco 14249 . . . . . . . . . . . . . . 15 (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
12944, 103, 52, 128syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
130127, 129eqtr3d 2795 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇𝑥) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
131130oveq2d 7171 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
132 splval 14165 . . . . . . . . . . . . . . . 16 ((𝑥𝑊 ∧ (𝑛 ∈ (0...(♯‘𝑥)) ∧ 𝑛 ∈ (0...(♯‘𝑥)) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o))) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) = (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))
13326, 115, 115, 36, 132syl13anc 1369 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) = (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))
134133coeq2d 5707 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) = (𝑇 ∘ (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
135 ccatco 14249 . . . . . . . . . . . . . . 15 ((((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word (𝐼 × 2o) ∧ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
136109, 103, 52, 135syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
137134, 136eqtrd 2793 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
138137oveq2d 7171 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))) = (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
139114, 131, 1383eqtr4d 2803 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
140 vex 3413 . . . . . . . . . . . 12 𝑥 ∈ V
141 ovex 7188 . . . . . . . . . . . 12 (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ V
142 eleq1 2839 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → (𝑢𝑊𝑥𝑊))
143 eleq1 2839 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → (𝑣𝑊 ↔ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊))
144142, 143bi2anan9 638 . . . . . . . . . . . . . 14 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ((𝑢𝑊𝑣𝑊) ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊)))
14519, 144bitr3id 288 . . . . . . . . . . . . 13 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ({𝑢, 𝑣} ⊆ 𝑊 ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊)))
146 coeq2 5703 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → (𝑇𝑢) = (𝑇𝑥))
147146oveq2d 7171 . . . . . . . . . . . . . 14 (𝑢 = 𝑥 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑥)))
148 coeq2 5703 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → (𝑇𝑣) = (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
149148oveq2d 7171 . . . . . . . . . . . . . 14 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → (𝐻 Σg (𝑇𝑣)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
150147, 149eqeqan12d 2775 . . . . . . . . . . . . 13 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ((𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)) ↔ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))))
151145, 150anbi12d 633 . . . . . . . . . . . 12 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → (({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ((𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊) ∧ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))))
152 eqid 2758 . . . . . . . . . . . 12 {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
153140, 141, 151, 152braba 5397 . . . . . . . . . . 11 (𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ((𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊) ∧ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))))
15426, 42, 139, 153syl21anbrc 1341 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
155154ralrimivva 3120 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) → ∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
156155ralrimivva 3120 . . . . . . . 8 (𝜑 → ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
1571fvexi 6676 . . . . . . . . . 10 𝑊 ∈ V
158 erex 8328 . . . . . . . . . 10 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 → (𝑊 ∈ V → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V))
15925, 157, 158mpisyl 21 . . . . . . . . 9 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V)
160 ereq1 8311 . . . . . . . . . . 11 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (𝑟 Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊))
161 breq 5037 . . . . . . . . . . . . 13 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
1621612ralbidv 3128 . . . . . . . . . . . 12 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
1631622ralbidv 3128 . . . . . . . . . . 11 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
164160, 163anbi12d 633 . . . . . . . . . 10 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → ((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
165164elabg 3589 . . . . . . . . 9 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V → ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
166159, 165syl 17 . . . . . . . 8 (𝜑 → ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
16725, 156, 166mpbir2and 712 . . . . . . 7 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))})
168 intss1 4856 . . . . . . 7 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
169167, 168syl 17 . . . . . 6 (𝜑 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
1703, 169eqsstrid 3942 . . . . 5 (𝜑 ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
171170ssbrd 5078 . . . 4 (𝜑 → (𝐴 𝐶𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶))
172171imp 410 . . 3 ((𝜑𝐴 𝐶) → 𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶)
1731, 2efger 18916 . . . . . 6 Er 𝑊
174 errel 8313 . . . . . 6 ( Er 𝑊 → Rel )
175173, 174mp1i 13 . . . . 5 (𝜑 → Rel )
176 brrelex12 5577 . . . . 5 ((Rel 𝐴 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
177175, 176sylan 583 . . . 4 ((𝜑𝐴 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
178 preq12 4631 . . . . . . 7 ((𝑢 = 𝐴𝑣 = 𝐶) → {𝑢, 𝑣} = {𝐴, 𝐶})
179178sseq1d 3925 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐶) → ({𝑢, 𝑣} ⊆ 𝑊 ↔ {𝐴, 𝐶} ⊆ 𝑊))
180 coeq2 5703 . . . . . . . 8 (𝑢 = 𝐴 → (𝑇𝑢) = (𝑇𝐴))
181180oveq2d 7171 . . . . . . 7 (𝑢 = 𝐴 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝐴)))
182 coeq2 5703 . . . . . . . 8 (𝑣 = 𝐶 → (𝑇𝑣) = (𝑇𝐶))
183182oveq2d 7171 . . . . . . 7 (𝑣 = 𝐶 → (𝐻 Σg (𝑇𝑣)) = (𝐻 Σg (𝑇𝐶)))
184181, 183eqeqan12d 2775 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐶) → ((𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)) ↔ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶))))
185179, 184anbi12d 633 . . . . 5 ((𝑢 = 𝐴𝑣 = 𝐶) → (({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
186185, 152brabga 5394 . . . 4 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶 ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
187177, 186syl 17 . . 3 ((𝜑𝐴 𝐶) → (𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶 ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
188172, 187mpbid 235 . 2 ((𝜑𝐴 𝐶) → ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶))))
189188simprd 499 1 ((𝜑𝐴 𝐶) → (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2735  wral 3070  Vcvv 3409  cdif 3857  cin 3859  wss 3860  c0 4227  ifcif 4423  {cpr 4527  cop 4531  cotp 4533   cint 4841   class class class wbr 5035  {copab 5097   I cid 5432   × cxp 5525  ccom 5531  Rel wrel 5532  wf 6335  cfv 6339  (class class class)co 7155  cmpo 7157  1oc1o 8110  2oc2o 8111   Er wer 8301  0cc0 10580  0cn0 11939  cuz 12287  ...cfz 12944  chash 13745  Word cword 13918   ++ cconcat 13974   substr csubstr 14054   prefix cpfx 14084   splice csplice 14163  ⟨“cs2 14255  Basecbs 16546  +gcplusg 16628  0gc0g 16776   Σg cgsu 16777  Mndcmnd 17982  Grpcgrp 18174  invgcminusg 18175   ~FG cefg 18904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-2o 8118  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-n0 11940  df-z 12026  df-uz 12288  df-fz 12945  df-fzo 13088  df-seq 13424  df-hash 13746  df-word 13919  df-concat 13975  df-s1 14002  df-substr 14055  df-pfx 14085  df-splice 14164  df-s2 14262  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-0g 16778  df-gsum 16779  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-submnd 18028  df-grp 18177  df-minusg 18178  df-efg 18907
This theorem is referenced by:  frgpupf  18971
  Copyright terms: Public domain W3C validator