MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpuplem Structured version   Visualization version   GIF version

Theorem frgpuplem 19753
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpup.r = ( ~FG𝐼)
Assertion
Ref Expression
frgpuplem ((𝜑𝐴 𝐶) → (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝑦,𝐵,𝑧   𝜑,𝑦,𝑧   𝑦,𝐼,𝑧
Allowed substitution hints:   𝐶(𝑦,𝑧)   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝐻(𝑦,𝑧)   𝑉(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem frgpuplem
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑛 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup.w . . . . . . 7 𝑊 = ( I ‘Word (𝐼 × 2o))
2 frgpup.r . . . . . . 7 = ( ~FG𝐼)
31, 2efgval 19698 . . . . . 6 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))}
4 coeq2 5838 . . . . . . . . . . . . 13 (𝑢 = 𝑣 → (𝑇𝑢) = (𝑇𝑣))
54oveq2d 7421 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))
6 eqid 2735 . . . . . . . . . . . 12 {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} = {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}
75, 6eqer 8755 . . . . . . . . . . 11 {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} Er V
87a1i 11 . . . . . . . . . 10 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} Er V)
9 ssv 3983 . . . . . . . . . . 11 𝑊 ⊆ V
109a1i 11 . . . . . . . . . 10 (𝜑𝑊 ⊆ V)
118, 10erinxp 8805 . . . . . . . . 9 (𝜑 → ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊)
12 df-xp 5660 . . . . . . . . . . . . 13 (𝑊 × 𝑊) = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)}
1312ineq1i 4191 . . . . . . . . . . . 12 ((𝑊 × 𝑊) ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = ({⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)} ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))})
14 incom 4184 . . . . . . . . . . . 12 ((𝑊 × 𝑊) ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊))
15 inopab 5808 . . . . . . . . . . . 12 ({⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)} ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
1613, 14, 153eqtr3i 2766 . . . . . . . . . . 11 ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
17 vex 3463 . . . . . . . . . . . . . 14 𝑢 ∈ V
18 vex 3463 . . . . . . . . . . . . . 14 𝑣 ∈ V
1917, 18prss 4796 . . . . . . . . . . . . 13 ((𝑢𝑊𝑣𝑊) ↔ {𝑢, 𝑣} ⊆ 𝑊)
2019anbi1i 624 . . . . . . . . . . . 12 (((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))))
2120opabbii 5186 . . . . . . . . . . 11 {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
2216, 21eqtri 2758 . . . . . . . . . 10 ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
23 ereq1 8726 . . . . . . . . . 10 (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊))
2422, 23ax-mp 5 . . . . . . . . 9 (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊)
2511, 24sylib 218 . . . . . . . 8 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊)
26 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑥𝑊)
27 fviss 6956 . . . . . . . . . . . . . . 15 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
281, 27eqsstri 4005 . . . . . . . . . . . . . 14 𝑊 ⊆ Word (𝐼 × 2o)
2928, 26sselid 3956 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
30 opelxpi 5691 . . . . . . . . . . . . . . 15 ((𝑎𝐼𝑏 ∈ 2o) → ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2o))
3130adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2o))
32 simprl 770 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑎𝐼)
33 2oconcl 8515 . . . . . . . . . . . . . . . 16 (𝑏 ∈ 2o → (1o𝑏) ∈ 2o)
3433ad2antll 729 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (1o𝑏) ∈ 2o)
3532, 34opelxpd 5693 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ⟨𝑎, (1o𝑏)⟩ ∈ (𝐼 × 2o))
3631, 35s2cld 14890 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o))
37 splcl 14770 . . . . . . . . . . . . 13 ((𝑥 ∈ Word (𝐼 × 2o) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ Word (𝐼 × 2o))
3829, 36, 37syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ Word (𝐼 × 2o))
391efgrcl 19696 . . . . . . . . . . . . . 14 (𝑥𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
4026, 39syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
4140simprd 495 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑊 = Word (𝐼 × 2o))
4238, 41eleqtrrd 2837 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊)
43 pfxcl 14695 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o))
4429, 43syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o))
45 frgpup.b . . . . . . . . . . . . . . . . . . 19 𝐵 = (Base‘𝐻)
46 frgpup.n . . . . . . . . . . . . . . . . . . 19 𝑁 = (invg𝐻)
47 frgpup.t . . . . . . . . . . . . . . . . . . 19 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
48 frgpup.h . . . . . . . . . . . . . . . . . . 19 (𝜑𝐻 ∈ Grp)
49 frgpup.i . . . . . . . . . . . . . . . . . . 19 (𝜑𝐼𝑉)
50 frgpup.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:𝐼𝐵)
5145, 46, 47, 48, 49, 50frgpuptf 19751 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
5251ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑇:(𝐼 × 2o)⟶𝐵)
53 ccatco 14854 . . . . . . . . . . . . . . . . 17 (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))
5444, 36, 52, 53syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))
5554oveq2d 7421 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))))
5648ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝐻 ∈ Grp)
5756grpmndd 18929 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝐻 ∈ Mnd)
58 wrdco 14850 . . . . . . . . . . . . . . . . 17 (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵)
5944, 52, 58syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵)
60 wrdco 14850 . . . . . . . . . . . . . . . . 17 ((⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word 𝐵)
6136, 52, 60syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word 𝐵)
62 eqid 2735 . . . . . . . . . . . . . . . . 17 (+g𝐻) = (+g𝐻)
6345, 62gsumccat 18819 . . . . . . . . . . . . . . . 16 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵 ∧ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))))
6457, 59, 61, 63syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))))
6552, 31, 35s2co 14939 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) = ⟨“(𝑇‘⟨𝑎, 𝑏⟩)(𝑇‘⟨𝑎, (1o𝑏)⟩)”⟩)
66 df-ov 7408 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎𝑇𝑏) = (𝑇‘⟨𝑎, 𝑏⟩)
6766a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑎𝑇𝑏) = (𝑇‘⟨𝑎, 𝑏⟩))
6866fveq2i 6879 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁‘(𝑎𝑇𝑏)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩))
69 df-ov 7408 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎(𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)𝑏) = ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)
70 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
7170efgmval 19693 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝐼𝑏 ∈ 2o) → (𝑎(𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)𝑏) = ⟨𝑎, (1o𝑏)⟩)
7269, 71eqtr3id 2784 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝐼𝑏 ∈ 2o) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩) = ⟨𝑎, (1o𝑏)⟩)
7372adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩) = ⟨𝑎, (1o𝑏)⟩)
7473fveq2d 6880 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑇‘⟨𝑎, (1o𝑏)⟩))
7545, 46, 47, 48, 49, 50, 70frgpuptinv 19752 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2o)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7630, 75sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7776adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7874, 77eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇‘⟨𝑎, (1o𝑏)⟩) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7968, 78eqtr4id 2789 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑁‘(𝑎𝑇𝑏)) = (𝑇‘⟨𝑎, (1o𝑏)⟩))
8067, 79s2eqd 14882 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩ = ⟨“(𝑇‘⟨𝑎, 𝑏⟩)(𝑇‘⟨𝑎, (1o𝑏)⟩)”⟩)
8165, 80eqtr4d 2773 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) = ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩)
8281oveq2d 7421 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) = (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩))
83 simprr 772 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑏 ∈ 2o)
8452, 32, 83fovcdmd 7579 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑎𝑇𝑏) ∈ 𝐵)
8545, 46grpinvcl 18970 . . . . . . . . . . . . . . . . . . . 20 ((𝐻 ∈ Grp ∧ (𝑎𝑇𝑏) ∈ 𝐵) → (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵)
8656, 84, 85syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵)
8745, 62gsumws2 18820 . . . . . . . . . . . . . . . . . . 19 ((𝐻 ∈ Mnd ∧ (𝑎𝑇𝑏) ∈ 𝐵 ∧ (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵) → (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩) = ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))))
8857, 84, 86, 87syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩) = ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))))
89 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 (0g𝐻) = (0g𝐻)
9045, 62, 89, 46grprinv 18973 . . . . . . . . . . . . . . . . . . 19 ((𝐻 ∈ Grp ∧ (𝑎𝑇𝑏) ∈ 𝐵) → ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))) = (0g𝐻))
9156, 84, 90syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))) = (0g𝐻))
9282, 88, 913eqtrd 2774 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) = (0g𝐻))
9392oveq2d 7421 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(0g𝐻)))
9445gsumwcl 18817 . . . . . . . . . . . . . . . . . 18 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵) → (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵)
9557, 59, 94syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵)
9645, 62, 89grprid 18951 . . . . . . . . . . . . . . . . 17 ((𝐻 ∈ Grp ∧ (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) ∈ 𝐵) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(0g𝐻)) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))))
9756, 95, 96syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(0g𝐻)) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))))
9893, 97eqtrd 2770 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))) = (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))))
9955, 64, 983eqtrrd 2775 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛))) = (𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩))))
10099oveq1d 7420 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
101 swrdcl 14663 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o))
10229, 101syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o))
103 wrdco 14850 . . . . . . . . . . . . . . 15 (((𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) ∈ Word 𝐵)
104102, 52, 103syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) ∈ Word 𝐵)
10545, 62gsumccat 18819 . . . . . . . . . . . . . 14 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 prefix 𝑛)) ∈ Word 𝐵 ∧ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
10657, 59, 104, 105syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ (𝑥 prefix 𝑛)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
107 ccatcl 14592 . . . . . . . . . . . . . . . 16 (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o)) → ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word (𝐼 × 2o))
10844, 36, 107syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word (𝐼 × 2o))
109 wrdco 14850 . . . . . . . . . . . . . . 15 ((((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ∈ Word 𝐵)
110108, 52, 109syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ∈ Word 𝐵)
11145, 62gsumccat 18819 . . . . . . . . . . . . . 14 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ∈ Word 𝐵 ∧ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
11257, 110, 104, 111syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
113100, 106, 1123eqtr4d 2780 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))) = (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
114 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑛 ∈ (0...(♯‘𝑥)))
115 lencl 14551 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ Word (𝐼 × 2o) → (♯‘𝑥) ∈ ℕ0)
11629, 115syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (♯‘𝑥) ∈ ℕ0)
117 nn0uz 12894 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
118116, 117eleqtrdi 2844 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (♯‘𝑥) ∈ (ℤ‘0))
119 eluzfz2 13549 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑥) ∈ (ℤ‘0) → (♯‘𝑥) ∈ (0...(♯‘𝑥)))
120118, 119syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (♯‘𝑥) ∈ (0...(♯‘𝑥)))
121 ccatpfx 14719 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑛 ∈ (0...(♯‘𝑥)) ∧ (♯‘𝑥) ∈ (0...(♯‘𝑥))) → ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) = (𝑥 prefix (♯‘𝑥)))
12229, 114, 120, 121syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) = (𝑥 prefix (♯‘𝑥)))
123 pfxid 14702 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ Word (𝐼 × 2o) → (𝑥 prefix (♯‘𝑥)) = 𝑥)
12429, 123syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 prefix (♯‘𝑥)) = 𝑥)
125122, 124eqtrd 2770 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)) = 𝑥)
126125coeq2d 5842 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = (𝑇𝑥))
127 ccatco 14854 . . . . . . . . . . . . . . 15 (((𝑥 prefix 𝑛) ∈ Word (𝐼 × 2o) ∧ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
12844, 102, 52, 127syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ ((𝑥 prefix 𝑛) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
129126, 128eqtr3d 2772 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇𝑥) = ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
130129oveq2d 7421 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg ((𝑇 ∘ (𝑥 prefix 𝑛)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
131 splval 14769 . . . . . . . . . . . . . . . 16 ((𝑥𝑊 ∧ (𝑛 ∈ (0...(♯‘𝑥)) ∧ 𝑛 ∈ (0...(♯‘𝑥)) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ ∈ Word (𝐼 × 2o))) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) = (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))
13226, 114, 114, 36, 131syl13anc 1374 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) = (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))
133132coeq2d 5842 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) = (𝑇 ∘ (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
134 ccatco 14854 . . . . . . . . . . . . . . 15 ((((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ∈ Word (𝐼 × 2o) ∧ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩) ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
135108, 102, 52, 134syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
136133, 135eqtrd 2770 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) = ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩))))
137136oveq2d 7421 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))) = (𝐻 Σg ((𝑇 ∘ ((𝑥 prefix 𝑛) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (♯‘𝑥)⟩)))))
138113, 130, 1373eqtr4d 2780 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
139 vex 3463 . . . . . . . . . . . 12 𝑥 ∈ V
140 ovex 7438 . . . . . . . . . . . 12 (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ V
141 eleq1 2822 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → (𝑢𝑊𝑥𝑊))
142 eleq1 2822 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → (𝑣𝑊 ↔ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊))
143141, 142bi2anan9 638 . . . . . . . . . . . . . 14 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ((𝑢𝑊𝑣𝑊) ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊)))
14419, 143bitr3id 285 . . . . . . . . . . . . 13 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ({𝑢, 𝑣} ⊆ 𝑊 ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊)))
145 coeq2 5838 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → (𝑇𝑢) = (𝑇𝑥))
146145oveq2d 7421 . . . . . . . . . . . . . 14 (𝑢 = 𝑥 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑥)))
147 coeq2 5838 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → (𝑇𝑣) = (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
148147oveq2d 7421 . . . . . . . . . . . . . 14 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → (𝐻 Σg (𝑇𝑣)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
149146, 148eqeqan12d 2749 . . . . . . . . . . . . 13 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ((𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)) ↔ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))))
150144, 149anbi12d 632 . . . . . . . . . . . 12 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → (({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ((𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊) ∧ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))))
151 eqid 2735 . . . . . . . . . . . 12 {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
152139, 140, 150, 151braba 5512 . . . . . . . . . . 11 (𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ((𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ∈ 𝑊) ∧ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))))
15326, 42, 138, 152syl21anbrc 1345 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2o)) → 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
154153ralrimivva 3187 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(♯‘𝑥)))) → ∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
155154ralrimivva 3187 . . . . . . . 8 (𝜑 → ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
1561fvexi 6890 . . . . . . . . . 10 𝑊 ∈ V
157 erex 8743 . . . . . . . . . 10 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 → (𝑊 ∈ V → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V))
15825, 156, 157mpisyl 21 . . . . . . . . 9 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V)
159 ereq1 8726 . . . . . . . . . . 11 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (𝑟 Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊))
160 breq 5121 . . . . . . . . . . . . 13 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
1611602ralbidv 3205 . . . . . . . . . . . 12 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
1621612ralbidv 3205 . . . . . . . . . . 11 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
163159, 162anbi12d 632 . . . . . . . . . 10 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → ((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
164163elabg 3655 . . . . . . . . 9 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V → ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
165158, 164syl 17 . . . . . . . 8 (𝜑 → ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))))
16625, 155, 165mpbir2and 713 . . . . . . 7 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))})
167 intss1 4939 . . . . . . 7 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
168166, 167syl 17 . . . . . 6 (𝜑 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
1693, 168eqsstrid 3997 . . . . 5 (𝜑 ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
170169ssbrd 5162 . . . 4 (𝜑 → (𝐴 𝐶𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶))
171170imp 406 . . 3 ((𝜑𝐴 𝐶) → 𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶)
1721, 2efger 19699 . . . . . 6 Er 𝑊
173 errel 8728 . . . . . 6 ( Er 𝑊 → Rel )
174172, 173mp1i 13 . . . . 5 (𝜑 → Rel )
175 brrelex12 5706 . . . . 5 ((Rel 𝐴 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
176174, 175sylan 580 . . . 4 ((𝜑𝐴 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
177 preq12 4711 . . . . . . 7 ((𝑢 = 𝐴𝑣 = 𝐶) → {𝑢, 𝑣} = {𝐴, 𝐶})
178177sseq1d 3990 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐶) → ({𝑢, 𝑣} ⊆ 𝑊 ↔ {𝐴, 𝐶} ⊆ 𝑊))
179 coeq2 5838 . . . . . . . 8 (𝑢 = 𝐴 → (𝑇𝑢) = (𝑇𝐴))
180179oveq2d 7421 . . . . . . 7 (𝑢 = 𝐴 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝐴)))
181 coeq2 5838 . . . . . . . 8 (𝑣 = 𝐶 → (𝑇𝑣) = (𝑇𝐶))
182181oveq2d 7421 . . . . . . 7 (𝑣 = 𝐶 → (𝐻 Σg (𝑇𝑣)) = (𝐻 Σg (𝑇𝐶)))
183180, 182eqeqan12d 2749 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐶) → ((𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)) ↔ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶))))
184178, 183anbi12d 632 . . . . 5 ((𝑢 = 𝐴𝑣 = 𝐶) → (({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
185184, 151brabga 5509 . . . 4 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶 ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
186176, 185syl 17 . . 3 ((𝜑𝐴 𝐶) → (𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶 ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
187171, 186mpbid 232 . 2 ((𝜑𝐴 𝐶) → ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶))))
188187simprd 495 1 ((𝜑𝐴 𝐶) → (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2713  wral 3051  Vcvv 3459  cdif 3923  cin 3925  wss 3926  c0 4308  ifcif 4500  {cpr 4603  cop 4607  cotp 4609   cint 4922   class class class wbr 5119  {copab 5181   I cid 5547   × cxp 5652  ccom 5658  Rel wrel 5659  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  1oc1o 8473  2oc2o 8474   Er wer 8716  0cc0 11129  0cn0 12501  cuz 12852  ...cfz 13524  chash 14348  Word cword 14531   ++ cconcat 14588   substr csubstr 14658   prefix cpfx 14688   splice csplice 14767  ⟨“cs2 14860  Basecbs 17228  +gcplusg 17271  0gc0g 17453   Σg cgsu 17454  Mndcmnd 18712  Grpcgrp 18916  invgcminusg 18917   ~FG cefg 19687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-splice 14768  df-s2 14867  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-gsum 17456  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-efg 19690
This theorem is referenced by:  frgpupf  19754
  Copyright terms: Public domain W3C validator