![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqg0el | Structured version Visualization version GIF version |
Description: Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
Ref | Expression |
---|---|
eqg0el.1 | ⊢ ∼ = (𝐺 ~QG 𝐻) |
Ref | Expression |
---|---|
eqg0el | ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] ∼ = 𝐻 ↔ 𝑋 ∈ 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqg0el.1 | . . . . . 6 ⊢ ∼ = (𝐺 ~QG 𝐻) | |
3 | 1, 2 | eqger 19052 | . . . . 5 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → ∼ Er (Base‘𝐺)) |
4 | 3 | adantl 482 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ∼ Er (Base‘𝐺)) |
5 | eqid 2732 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
6 | 1, 5 | grpidcl 18846 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ (Base‘𝐺)) |
7 | 6 | adantr 481 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (0g‘𝐺) ∈ (Base‘𝐺)) |
8 | 4, 7 | erth 8748 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ((0g‘𝐺) ∼ 𝑋 ↔ [(0g‘𝐺)] ∼ = [𝑋] ∼ )) |
9 | 1, 2, 5 | eqgid 19054 | . . . . 5 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → [(0g‘𝐺)] ∼ = 𝐻) |
10 | 9 | adantl 482 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → [(0g‘𝐺)] ∼ = 𝐻) |
11 | 10 | eqeq1d 2734 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([(0g‘𝐺)] ∼ = [𝑋] ∼ ↔ 𝐻 = [𝑋] ∼ )) |
12 | eqcom 2739 | . . . 4 ⊢ (𝐻 = [𝑋] ∼ ↔ [𝑋] ∼ = 𝐻) | |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐻 = [𝑋] ∼ ↔ [𝑋] ∼ = 𝐻)) |
14 | 8, 11, 13 | 3bitrrd 305 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] ∼ = 𝐻 ↔ (0g‘𝐺) ∼ 𝑋)) |
15 | errel 8708 | . . . 4 ⊢ ( ∼ Er (Base‘𝐺) → Rel ∼ ) | |
16 | relelec 8744 | . . . 4 ⊢ (Rel ∼ → (𝑋 ∈ [(0g‘𝐺)] ∼ ↔ (0g‘𝐺) ∼ 𝑋)) | |
17 | 3, 15, 16 | 3syl 18 | . . 3 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → (𝑋 ∈ [(0g‘𝐺)] ∼ ↔ (0g‘𝐺) ∼ 𝑋)) |
18 | 17 | adantl 482 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ [(0g‘𝐺)] ∼ ↔ (0g‘𝐺) ∼ 𝑋)) |
19 | 10 | eleq2d 2819 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ [(0g‘𝐺)] ∼ ↔ 𝑋 ∈ 𝐻)) |
20 | 14, 18, 19 | 3bitr2d 306 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] ∼ = 𝐻 ↔ 𝑋 ∈ 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5147 Rel wrel 5680 ‘cfv 6540 (class class class)co 7405 Er wer 8696 [cec 8697 Basecbs 17140 0gc0g 17381 Grpcgrp 18815 SubGrpcsubg 18994 ~QG cqg 18996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-ec 8701 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-subg 18997 df-eqg 18999 |
This theorem is referenced by: ghmqusker 32520 qsidomlem1 32559 qsidomlem2 32560 qsdrngi 32597 |
Copyright terms: Public domain | W3C validator |