MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqg0el Structured version   Visualization version   GIF version

Theorem eqg0el 19214
Description: Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024.)
Hypothesis
Ref Expression
eqg0el.1 = (𝐺 ~QG 𝐻)
Assertion
Ref Expression
eqg0el ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] = 𝐻𝑋𝐻))

Proof of Theorem eqg0el
StepHypRef Expression
1 eqid 2735 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
2 eqg0el.1 . . . . . 6 = (𝐺 ~QG 𝐻)
31, 2eqger 19209 . . . . 5 (𝐻 ∈ (SubGrp‘𝐺) → Er (Base‘𝐺))
43adantl 481 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → Er (Base‘𝐺))
5 eqid 2735 . . . . . 6 (0g𝐺) = (0g𝐺)
61, 5grpidcl 18996 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
76adantr 480 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (0g𝐺) ∈ (Base‘𝐺))
84, 7erth 8795 . . 3 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ((0g𝐺) 𝑋 ↔ [(0g𝐺)] = [𝑋] ))
91, 2, 5eqgid 19211 . . . . 5 (𝐻 ∈ (SubGrp‘𝐺) → [(0g𝐺)] = 𝐻)
109adantl 481 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → [(0g𝐺)] = 𝐻)
1110eqeq1d 2737 . . 3 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([(0g𝐺)] = [𝑋] 𝐻 = [𝑋] ))
12 eqcom 2742 . . . 4 (𝐻 = [𝑋] ↔ [𝑋] = 𝐻)
1312a1i 11 . . 3 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐻 = [𝑋] ↔ [𝑋] = 𝐻))
148, 11, 133bitrrd 306 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] = 𝐻 ↔ (0g𝐺) 𝑋))
15 errel 8753 . . . 4 ( Er (Base‘𝐺) → Rel )
16 relelec 8791 . . . 4 (Rel → (𝑋 ∈ [(0g𝐺)] ↔ (0g𝐺) 𝑋))
173, 15, 163syl 18 . . 3 (𝐻 ∈ (SubGrp‘𝐺) → (𝑋 ∈ [(0g𝐺)] ↔ (0g𝐺) 𝑋))
1817adantl 481 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ [(0g𝐺)] ↔ (0g𝐺) 𝑋))
1910eleq2d 2825 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ [(0g𝐺)] 𝑋𝐻))
2014, 18, 193bitr2d 307 1 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] = 𝐻𝑋𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  Rel wrel 5694  cfv 6563  (class class class)co 7431   Er wer 8741  [cec 8742  Basecbs 17245  0gc0g 17486  Grpcgrp 18964  SubGrpcsubg 19151   ~QG cqg 19153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-ec 8746  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-eqg 19156
This theorem is referenced by:  ghmqusker  19318  qsidomlem1  33460  qsidomlem2  33461  qsdrngi  33503
  Copyright terms: Public domain W3C validator