MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqg0el Structured version   Visualization version   GIF version

Theorem eqg0el 19223
Description: Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024.)
Hypothesis
Ref Expression
eqg0el.1 = (𝐺 ~QG 𝐻)
Assertion
Ref Expression
eqg0el ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] = 𝐻𝑋𝐻))

Proof of Theorem eqg0el
StepHypRef Expression
1 eqid 2740 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
2 eqg0el.1 . . . . . 6 = (𝐺 ~QG 𝐻)
31, 2eqger 19218 . . . . 5 (𝐻 ∈ (SubGrp‘𝐺) → Er (Base‘𝐺))
43adantl 481 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → Er (Base‘𝐺))
5 eqid 2740 . . . . . 6 (0g𝐺) = (0g𝐺)
61, 5grpidcl 19005 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
76adantr 480 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (0g𝐺) ∈ (Base‘𝐺))
84, 7erth 8814 . . 3 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ((0g𝐺) 𝑋 ↔ [(0g𝐺)] = [𝑋] ))
91, 2, 5eqgid 19220 . . . . 5 (𝐻 ∈ (SubGrp‘𝐺) → [(0g𝐺)] = 𝐻)
109adantl 481 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → [(0g𝐺)] = 𝐻)
1110eqeq1d 2742 . . 3 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([(0g𝐺)] = [𝑋] 𝐻 = [𝑋] ))
12 eqcom 2747 . . . 4 (𝐻 = [𝑋] ↔ [𝑋] = 𝐻)
1312a1i 11 . . 3 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐻 = [𝑋] ↔ [𝑋] = 𝐻))
148, 11, 133bitrrd 306 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] = 𝐻 ↔ (0g𝐺) 𝑋))
15 errel 8772 . . . 4 ( Er (Base‘𝐺) → Rel )
16 relelec 8810 . . . 4 (Rel → (𝑋 ∈ [(0g𝐺)] ↔ (0g𝐺) 𝑋))
173, 15, 163syl 18 . . 3 (𝐻 ∈ (SubGrp‘𝐺) → (𝑋 ∈ [(0g𝐺)] ↔ (0g𝐺) 𝑋))
1817adantl 481 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ [(0g𝐺)] ↔ (0g𝐺) 𝑋))
1910eleq2d 2830 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ [(0g𝐺)] 𝑋𝐻))
2014, 18, 193bitr2d 307 1 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] = 𝐻𝑋𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  Rel wrel 5705  cfv 6573  (class class class)co 7448   Er wer 8760  [cec 8761  Basecbs 17258  0gc0g 17499  Grpcgrp 18973  SubGrpcsubg 19160   ~QG cqg 19162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-ec 8765  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163  df-eqg 19165
This theorem is referenced by:  ghmqusker  19327  qsidomlem1  33445  qsidomlem2  33446  qsdrngi  33488
  Copyright terms: Public domain W3C validator