Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqg0el | Structured version Visualization version GIF version |
Description: Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
Ref | Expression |
---|---|
eqg0el.1 | ⊢ ∼ = (𝐺 ~QG 𝐻) |
Ref | Expression |
---|---|
eqg0el | ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] ∼ = 𝐻 ↔ 𝑋 ∈ 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqg0el.1 | . . . . . 6 ⊢ ∼ = (𝐺 ~QG 𝐻) | |
3 | 1, 2 | eqger 18397 | . . . . 5 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → ∼ Er (Base‘𝐺)) |
4 | 3 | adantl 485 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ∼ Er (Base‘𝐺)) |
5 | eqid 2758 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
6 | 1, 5 | grpidcl 18198 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ (Base‘𝐺)) |
7 | 6 | adantr 484 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (0g‘𝐺) ∈ (Base‘𝐺)) |
8 | 4, 7 | erth 8348 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ((0g‘𝐺) ∼ 𝑋 ↔ [(0g‘𝐺)] ∼ = [𝑋] ∼ )) |
9 | 1, 2, 5 | eqgid 18399 | . . . . 5 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → [(0g‘𝐺)] ∼ = 𝐻) |
10 | 9 | adantl 485 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → [(0g‘𝐺)] ∼ = 𝐻) |
11 | 10 | eqeq1d 2760 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([(0g‘𝐺)] ∼ = [𝑋] ∼ ↔ 𝐻 = [𝑋] ∼ )) |
12 | eqcom 2765 | . . . 4 ⊢ (𝐻 = [𝑋] ∼ ↔ [𝑋] ∼ = 𝐻) | |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐻 = [𝑋] ∼ ↔ [𝑋] ∼ = 𝐻)) |
14 | 8, 11, 13 | 3bitrrd 309 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] ∼ = 𝐻 ↔ (0g‘𝐺) ∼ 𝑋)) |
15 | errel 8308 | . . . 4 ⊢ ( ∼ Er (Base‘𝐺) → Rel ∼ ) | |
16 | relelec 8344 | . . . 4 ⊢ (Rel ∼ → (𝑋 ∈ [(0g‘𝐺)] ∼ ↔ (0g‘𝐺) ∼ 𝑋)) | |
17 | 3, 15, 16 | 3syl 18 | . . 3 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → (𝑋 ∈ [(0g‘𝐺)] ∼ ↔ (0g‘𝐺) ∼ 𝑋)) |
18 | 17 | adantl 485 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ [(0g‘𝐺)] ∼ ↔ (0g‘𝐺) ∼ 𝑋)) |
19 | 10 | eleq2d 2837 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ [(0g‘𝐺)] ∼ ↔ 𝑋 ∈ 𝐻)) |
20 | 14, 18, 19 | 3bitr2d 310 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] ∼ = 𝐻 ↔ 𝑋 ∈ 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 Rel wrel 5529 ‘cfv 6335 (class class class)co 7150 Er wer 8296 [cec 8297 Basecbs 16541 0gc0g 16771 Grpcgrp 18169 SubGrpcsubg 18340 ~QG cqg 18342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-ec 8301 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-0g 16773 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-subg 18343 df-eqg 18345 |
This theorem is referenced by: qsidomlem1 31149 qsidomlem2 31150 |
Copyright terms: Public domain | W3C validator |