Proof of Theorem ismntop
Step | Hyp | Ref
| Expression |
1 | | ismntoplly 32024 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐽 ∈ 𝑉) → (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally
[(TopOpen‘(𝔼hil‘𝑁))] ≃ ))) |
2 | | haustop 22531 |
. . . . . . . . 9
⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
3 | 2 | adantl 483 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐽 ∈ Haus) →
𝐽 ∈
Top) |
4 | 3 | biantrurd 534 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐽 ∈ Haus) →
(∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈
[(TopOpen‘(𝔼hil‘𝑁))] ≃ ) ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈
[(TopOpen‘(𝔼hil‘𝑁))] ≃ )))) |
5 | | hmpher 22984 |
. . . . . . . . . . . . 13
⊢ ≃
Er Top |
6 | | errel 8538 |
. . . . . . . . . . . . 13
⊢ ( ≃
Er Top → Rel ≃ ) |
7 | | relelec 8574 |
. . . . . . . . . . . . 13
⊢ (Rel
≃ → ((𝐽
↾t 𝑢)
∈ [(TopOpen‘(𝔼hil‘𝑁))] ≃ ↔
(TopOpen‘(𝔼hil‘𝑁)) ≃ (𝐽 ↾t 𝑢))) |
8 | 5, 6, 7 | mp2b 10 |
. . . . . . . . . . . 12
⊢ ((𝐽 ↾t 𝑢) ∈
[(TopOpen‘(𝔼hil‘𝑁))] ≃ ↔
(TopOpen‘(𝔼hil‘𝑁)) ≃ (𝐽 ↾t 𝑢)) |
9 | | hmphsymb 22986 |
. . . . . . . . . . . 12
⊢
((TopOpen‘(𝔼hil‘𝑁)) ≃ (𝐽 ↾t 𝑢) ↔ (𝐽 ↾t 𝑢) ≃
(TopOpen‘(𝔼hil‘𝑁))) |
10 | 8, 9 | bitr2i 276 |
. . . . . . . . . . 11
⊢ ((𝐽 ↾t 𝑢) ≃
(TopOpen‘(𝔼hil‘𝑁)) ↔ (𝐽 ↾t 𝑢) ∈
[(TopOpen‘(𝔼hil‘𝑁))] ≃ ) |
11 | 10 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝐽 ∈ Haus) →
((𝐽 ↾t
𝑢) ≃
(TopOpen‘(𝔼hil‘𝑁)) ↔ (𝐽 ↾t 𝑢) ∈
[(TopOpen‘(𝔼hil‘𝑁))] ≃ )) |
12 | 11 | anbi2d 630 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐽 ∈ Haus) →
((𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ≃
(TopOpen‘(𝔼hil‘𝑁))) ↔ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈
[(TopOpen‘(𝔼hil‘𝑁))] ≃ ))) |
13 | 12 | rexbidv 3171 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐽 ∈ Haus) →
(∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ≃
(TopOpen‘(𝔼hil‘𝑁))) ↔ ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈
[(TopOpen‘(𝔼hil‘𝑁))] ≃ ))) |
14 | 13 | 2ralbidv 3208 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐽 ∈ Haus) →
(∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ≃
(TopOpen‘(𝔼hil‘𝑁))) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈
[(TopOpen‘(𝔼hil‘𝑁))] ≃ ))) |
15 | | islly 22668 |
. . . . . . . 8
⊢ (𝐽 ∈ Locally
[(TopOpen‘(𝔼hil‘𝑁))] ≃ ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈
[(TopOpen‘(𝔼hil‘𝑁))] ≃ ))) |
16 | 15 | a1i 11 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐽 ∈ Haus) →
(𝐽 ∈ Locally
[(TopOpen‘(𝔼hil‘𝑁))] ≃ ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈
[(TopOpen‘(𝔼hil‘𝑁))] ≃ )))) |
17 | 4, 14, 16 | 3bitr4rd 312 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐽 ∈ Haus) →
(𝐽 ∈ Locally
[(TopOpen‘(𝔼hil‘𝑁))] ≃ ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ≃
(TopOpen‘(𝔼hil‘𝑁))))) |
18 | 17 | pm5.32da 580 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ((𝐽 ∈ Haus
∧ 𝐽 ∈ Locally
[(TopOpen‘(𝔼hil‘𝑁))] ≃ ) ↔ (𝐽 ∈ Haus ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ≃
(TopOpen‘(𝔼hil‘𝑁)))))) |
19 | 18 | anbi2d 630 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ((𝐽 ∈
2ndω ∧ (𝐽 ∈ Haus ∧ 𝐽 ∈ Locally
[(TopOpen‘(𝔼hil‘𝑁))] ≃ )) ↔ (𝐽 ∈ 2ndω ∧ (𝐽 ∈ Haus ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ≃
(TopOpen‘(𝔼hil‘𝑁))))))) |
20 | | 3anass 1095 |
. . . 4
⊢ ((𝐽 ∈ 2ndω
∧ 𝐽 ∈ Haus ∧
𝐽 ∈ Locally
[(TopOpen‘(𝔼hil‘𝑁))] ≃ ) ↔ (𝐽 ∈ 2ndω ∧ (𝐽 ∈ Haus ∧ 𝐽 ∈ Locally
[(TopOpen‘(𝔼hil‘𝑁))] ≃ ))) |
21 | | 3anass 1095 |
. . . 4
⊢ ((𝐽 ∈ 2ndω
∧ 𝐽 ∈ Haus ∧
∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ≃
(TopOpen‘(𝔼hil‘𝑁)))) ↔ (𝐽 ∈ 2ndω ∧ (𝐽 ∈ Haus ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ≃
(TopOpen‘(𝔼hil‘𝑁)))))) |
22 | 19, 20, 21 | 3bitr4g 314 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝐽 ∈
2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally
[(TopOpen‘(𝔼hil‘𝑁))] ≃ ) ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ≃
(TopOpen‘(𝔼hil‘𝑁)))))) |
23 | 22 | adantr 482 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐽 ∈ 𝑉) → ((𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally
[(TopOpen‘(𝔼hil‘𝑁))] ≃ ) ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ≃
(TopOpen‘(𝔼hil‘𝑁)))))) |
24 | 1, 23 | bitrd 279 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐽 ∈ 𝑉) → (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ≃
(TopOpen‘(𝔼hil‘𝑁)))))) |