Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismntop Structured version   Visualization version   GIF version

Theorem ismntop 33001
Description: Property of being a manifold. (Contributed by Thierry Arnoux, 5-Jan-2020.)
Assertion
Ref Expression
ismntop ((𝑁 ∈ β„•0 ∧ 𝐽 ∈ 𝑉) β†’ (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2ndΟ‰ ∧ 𝐽 ∈ Haus ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ≃ (TopOpenβ€˜(𝔼hilβ€˜π‘))))))
Distinct variable groups:   𝑒,𝐽,π‘₯,𝑦   𝑒,𝑁,π‘₯,𝑦
Allowed substitution hints:   𝑉(π‘₯,𝑦,𝑒)

Proof of Theorem ismntop
StepHypRef Expression
1 ismntoplly 33000 . 2 ((𝑁 ∈ β„•0 ∧ 𝐽 ∈ 𝑉) β†’ (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2ndΟ‰ ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ )))
2 haustop 22834 . . . . . . . . 9 (𝐽 ∈ Haus β†’ 𝐽 ∈ Top)
32adantl 482 . . . . . . . 8 ((𝑁 ∈ β„•0 ∧ 𝐽 ∈ Haus) β†’ 𝐽 ∈ Top)
43biantrurd 533 . . . . . . 7 ((𝑁 ∈ β„•0 ∧ 𝐽 ∈ Haus) β†’ (βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ∈ [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ ) ↔ (𝐽 ∈ Top ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ∈ [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ ))))
5 hmpher 23287 . . . . . . . . . . . . 13 ≃ Er Top
6 errel 8711 . . . . . . . . . . . . 13 ( ≃ Er Top β†’ Rel ≃ )
7 relelec 8747 . . . . . . . . . . . . 13 (Rel ≃ β†’ ((𝐽 β†Ύt 𝑒) ∈ [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ ↔ (TopOpenβ€˜(𝔼hilβ€˜π‘)) ≃ (𝐽 β†Ύt 𝑒)))
85, 6, 7mp2b 10 . . . . . . . . . . . 12 ((𝐽 β†Ύt 𝑒) ∈ [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ ↔ (TopOpenβ€˜(𝔼hilβ€˜π‘)) ≃ (𝐽 β†Ύt 𝑒))
9 hmphsymb 23289 . . . . . . . . . . . 12 ((TopOpenβ€˜(𝔼hilβ€˜π‘)) ≃ (𝐽 β†Ύt 𝑒) ↔ (𝐽 β†Ύt 𝑒) ≃ (TopOpenβ€˜(𝔼hilβ€˜π‘)))
108, 9bitr2i 275 . . . . . . . . . . 11 ((𝐽 β†Ύt 𝑒) ≃ (TopOpenβ€˜(𝔼hilβ€˜π‘)) ↔ (𝐽 β†Ύt 𝑒) ∈ [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ )
1110a1i 11 . . . . . . . . . 10 ((𝑁 ∈ β„•0 ∧ 𝐽 ∈ Haus) β†’ ((𝐽 β†Ύt 𝑒) ≃ (TopOpenβ€˜(𝔼hilβ€˜π‘)) ↔ (𝐽 β†Ύt 𝑒) ∈ [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ ))
1211anbi2d 629 . . . . . . . . 9 ((𝑁 ∈ β„•0 ∧ 𝐽 ∈ Haus) β†’ ((𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ≃ (TopOpenβ€˜(𝔼hilβ€˜π‘))) ↔ (𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ∈ [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ )))
1312rexbidv 3178 . . . . . . . 8 ((𝑁 ∈ β„•0 ∧ 𝐽 ∈ Haus) β†’ (βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ≃ (TopOpenβ€˜(𝔼hilβ€˜π‘))) ↔ βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ∈ [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ )))
14132ralbidv 3218 . . . . . . 7 ((𝑁 ∈ β„•0 ∧ 𝐽 ∈ Haus) β†’ (βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ≃ (TopOpenβ€˜(𝔼hilβ€˜π‘))) ↔ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ∈ [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ )))
15 islly 22971 . . . . . . . 8 (𝐽 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ ↔ (𝐽 ∈ Top ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ∈ [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ )))
1615a1i 11 . . . . . . 7 ((𝑁 ∈ β„•0 ∧ 𝐽 ∈ Haus) β†’ (𝐽 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ ↔ (𝐽 ∈ Top ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ∈ [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ ))))
174, 14, 163bitr4rd 311 . . . . . 6 ((𝑁 ∈ β„•0 ∧ 𝐽 ∈ Haus) β†’ (𝐽 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ ↔ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ≃ (TopOpenβ€˜(𝔼hilβ€˜π‘)))))
1817pm5.32da 579 . . . . 5 (𝑁 ∈ β„•0 β†’ ((𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ ) ↔ (𝐽 ∈ Haus ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ≃ (TopOpenβ€˜(𝔼hilβ€˜π‘))))))
1918anbi2d 629 . . . 4 (𝑁 ∈ β„•0 β†’ ((𝐽 ∈ 2ndΟ‰ ∧ (𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ )) ↔ (𝐽 ∈ 2ndΟ‰ ∧ (𝐽 ∈ Haus ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ≃ (TopOpenβ€˜(𝔼hilβ€˜π‘)))))))
20 3anass 1095 . . . 4 ((𝐽 ∈ 2ndΟ‰ ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ ) ↔ (𝐽 ∈ 2ndΟ‰ ∧ (𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ )))
21 3anass 1095 . . . 4 ((𝐽 ∈ 2ndΟ‰ ∧ 𝐽 ∈ Haus ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ≃ (TopOpenβ€˜(𝔼hilβ€˜π‘)))) ↔ (𝐽 ∈ 2ndΟ‰ ∧ (𝐽 ∈ Haus ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ≃ (TopOpenβ€˜(𝔼hilβ€˜π‘))))))
2219, 20, 213bitr4g 313 . . 3 (𝑁 ∈ β„•0 β†’ ((𝐽 ∈ 2ndΟ‰ ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ ) ↔ (𝐽 ∈ 2ndΟ‰ ∧ 𝐽 ∈ Haus ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ≃ (TopOpenβ€˜(𝔼hilβ€˜π‘))))))
2322adantr 481 . 2 ((𝑁 ∈ β„•0 ∧ 𝐽 ∈ 𝑉) β†’ ((𝐽 ∈ 2ndΟ‰ ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘))] ≃ ) ↔ (𝐽 ∈ 2ndΟ‰ ∧ 𝐽 ∈ Haus ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ≃ (TopOpenβ€˜(𝔼hilβ€˜π‘))))))
241, 23bitrd 278 1 ((𝑁 ∈ β„•0 ∧ 𝐽 ∈ 𝑉) β†’ (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2ndΟ‰ ∧ 𝐽 ∈ Haus ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (𝐽 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝐽 β†Ύt 𝑒) ≃ (TopOpenβ€˜(𝔼hilβ€˜π‘))))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070   ∩ cin 3947  π’« cpw 4602   class class class wbr 5148  Rel wrel 5681  β€˜cfv 6543  (class class class)co 7408   Er wer 8699  [cec 8700  β„•0cn0 12471   β†Ύt crest 17365  TopOpenctopn 17366  Topctop 22394  Hauscha 22811  2ndΟ‰c2ndc 22941  Locally clly 22967   ≃ chmph 23257  π”Όhilcehl 24900  ManTopcmntop 32997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-1o 8465  df-er 8702  df-ec 8704  df-map 8821  df-top 22395  df-topon 22412  df-cn 22730  df-haus 22818  df-lly 22969  df-hmeo 23258  df-hmph 23259  df-mntop 32998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator