Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismntop Structured version   Visualization version   GIF version

Theorem ismntop 31267
Description: Property of being a manifold. (Contributed by Thierry Arnoux, 5-Jan-2020.)
Assertion
Ref Expression
ismntop ((𝑁 ∈ ℕ0𝐽𝑉) → (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ≃ (TopOpen‘(𝔼hil𝑁))))))
Distinct variable groups:   𝑢,𝐽,𝑥,𝑦   𝑢,𝑁,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑢)

Proof of Theorem ismntop
StepHypRef Expression
1 ismntoplly 31266 . 2 ((𝑁 ∈ ℕ0𝐽𝑉) → (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )))
2 haustop 21939 . . . . . . . . 9 (𝐽 ∈ Haus → 𝐽 ∈ Top)
32adantl 484 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐽 ∈ Haus) → 𝐽 ∈ Top)
43biantrurd 535 . . . . . . 7 ((𝑁 ∈ ℕ0𝐽 ∈ Haus) → (∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ [(TopOpen‘(𝔼hil𝑁))] ≃ ) ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ [(TopOpen‘(𝔼hil𝑁))] ≃ ))))
5 hmpher 22392 . . . . . . . . . . . . 13 ≃ Er Top
6 errel 8298 . . . . . . . . . . . . 13 ( ≃ Er Top → Rel ≃ )
7 relelec 8334 . . . . . . . . . . . . 13 (Rel ≃ → ((𝐽t 𝑢) ∈ [(TopOpen‘(𝔼hil𝑁))] ≃ ↔ (TopOpen‘(𝔼hil𝑁)) ≃ (𝐽t 𝑢)))
85, 6, 7mp2b 10 . . . . . . . . . . . 12 ((𝐽t 𝑢) ∈ [(TopOpen‘(𝔼hil𝑁))] ≃ ↔ (TopOpen‘(𝔼hil𝑁)) ≃ (𝐽t 𝑢))
9 hmphsymb 22394 . . . . . . . . . . . 12 ((TopOpen‘(𝔼hil𝑁)) ≃ (𝐽t 𝑢) ↔ (𝐽t 𝑢) ≃ (TopOpen‘(𝔼hil𝑁)))
108, 9bitr2i 278 . . . . . . . . . . 11 ((𝐽t 𝑢) ≃ (TopOpen‘(𝔼hil𝑁)) ↔ (𝐽t 𝑢) ∈ [(TopOpen‘(𝔼hil𝑁))] ≃ )
1110a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐽 ∈ Haus) → ((𝐽t 𝑢) ≃ (TopOpen‘(𝔼hil𝑁)) ↔ (𝐽t 𝑢) ∈ [(TopOpen‘(𝔼hil𝑁))] ≃ ))
1211anbi2d 630 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐽 ∈ Haus) → ((𝑦𝑢 ∧ (𝐽t 𝑢) ≃ (TopOpen‘(𝔼hil𝑁))) ↔ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ [(TopOpen‘(𝔼hil𝑁))] ≃ )))
1312rexbidv 3297 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐽 ∈ Haus) → (∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ≃ (TopOpen‘(𝔼hil𝑁))) ↔ ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ [(TopOpen‘(𝔼hil𝑁))] ≃ )))
14132ralbidv 3199 . . . . . . 7 ((𝑁 ∈ ℕ0𝐽 ∈ Haus) → (∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ≃ (TopOpen‘(𝔼hil𝑁))) ↔ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ [(TopOpen‘(𝔼hil𝑁))] ≃ )))
15 islly 22076 . . . . . . . 8 (𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ [(TopOpen‘(𝔼hil𝑁))] ≃ )))
1615a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ0𝐽 ∈ Haus) → (𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ [(TopOpen‘(𝔼hil𝑁))] ≃ ))))
174, 14, 163bitr4rd 314 . . . . . 6 ((𝑁 ∈ ℕ0𝐽 ∈ Haus) → (𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ↔ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ≃ (TopOpen‘(𝔼hil𝑁)))))
1817pm5.32da 581 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ) ↔ (𝐽 ∈ Haus ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ≃ (TopOpen‘(𝔼hil𝑁))))))
1918anbi2d 630 . . . 4 (𝑁 ∈ ℕ0 → ((𝐽 ∈ 2ndω ∧ (𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )) ↔ (𝐽 ∈ 2ndω ∧ (𝐽 ∈ Haus ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ≃ (TopOpen‘(𝔼hil𝑁)))))))
20 3anass 1091 . . . 4 ((𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ) ↔ (𝐽 ∈ 2ndω ∧ (𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )))
21 3anass 1091 . . . 4 ((𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ≃ (TopOpen‘(𝔼hil𝑁)))) ↔ (𝐽 ∈ 2ndω ∧ (𝐽 ∈ Haus ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ≃ (TopOpen‘(𝔼hil𝑁))))))
2219, 20, 213bitr4g 316 . . 3 (𝑁 ∈ ℕ0 → ((𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ) ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ≃ (TopOpen‘(𝔼hil𝑁))))))
2322adantr 483 . 2 ((𝑁 ∈ ℕ0𝐽𝑉) → ((𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ) ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ≃ (TopOpen‘(𝔼hil𝑁))))))
241, 23bitrd 281 1 ((𝑁 ∈ ℕ0𝐽𝑉) → (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ≃ (TopOpen‘(𝔼hil𝑁))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2114  wral 3138  wrex 3139  cin 3935  𝒫 cpw 4539   class class class wbr 5066  Rel wrel 5560  cfv 6355  (class class class)co 7156   Er wer 8286  [cec 8287  0cn0 11898  t crest 16694  TopOpenctopn 16695  Topctop 21501  Hauscha 21916  2ndωc2ndc 22046  Locally clly 22072  chmph 22362  𝔼hilcehl 23987  ManTopcmntop 31263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-1o 8102  df-er 8289  df-ec 8291  df-map 8408  df-top 21502  df-topon 21519  df-cn 21835  df-haus 21923  df-lly 22074  df-hmeo 22363  df-hmph 22364  df-mntop 31264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator