| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ercl | Structured version Visualization version GIF version | ||
| Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ersym.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| ersym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Ref | Expression |
|---|---|
| ercl | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersym.1 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 2 | errel 8680 | . . . 4 ⊢ (𝑅 Er 𝑋 → Rel 𝑅) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝑅) |
| 4 | ersym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 5 | releldm 5908 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
| 7 | erdm 8681 | . . 3 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
| 8 | 1, 7 | syl 17 | . 2 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
| 9 | 6, 8 | eleqtrd 2830 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 dom cdm 5638 Rel wrel 5643 Er wer 8668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-er 8671 |
| This theorem is referenced by: ercl2 8684 erthi 8727 qliftfun 8775 efgcpbl2 19687 frgpcpbl 19689 prter3 38875 |
| Copyright terms: Public domain | W3C validator |