MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ercl Structured version   Visualization version   GIF version

Theorem ercl 8509
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1 (𝜑𝑅 Er 𝑋)
ersym.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
ercl (𝜑𝐴𝑋)

Proof of Theorem ercl
StepHypRef Expression
1 ersym.1 . . . 4 (𝜑𝑅 Er 𝑋)
2 errel 8507 . . . 4 (𝑅 Er 𝑋 → Rel 𝑅)
31, 2syl 17 . . 3 (𝜑 → Rel 𝑅)
4 ersym.2 . . 3 (𝜑𝐴𝑅𝐵)
5 releldm 5853 . . 3 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
63, 4, 5syl2anc 584 . 2 (𝜑𝐴 ∈ dom 𝑅)
7 erdm 8508 . . 3 (𝑅 Er 𝑋 → dom 𝑅 = 𝑋)
81, 7syl 17 . 2 (𝜑 → dom 𝑅 = 𝑋)
96, 8eleqtrd 2841 1 (𝜑𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106   class class class wbr 5074  dom cdm 5589  Rel wrel 5594   Er wer 8495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-dm 5599  df-er 8498
This theorem is referenced by:  ercl2  8511  erthi  8549  qliftfun  8591  efgcpbl2  19363  frgpcpbl  19365  prter3  36896
  Copyright terms: Public domain W3C validator