Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ercl | Structured version Visualization version GIF version |
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ersym.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
ersym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
ercl | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ersym.1 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
2 | errel 8465 | . . . 4 ⊢ (𝑅 Er 𝑋 → Rel 𝑅) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝑅) |
4 | ersym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
5 | releldm 5842 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
6 | 3, 4, 5 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
7 | erdm 8466 | . . 3 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
8 | 1, 7 | syl 17 | . 2 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
9 | 6, 8 | eleqtrd 2841 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 dom cdm 5580 Rel wrel 5585 Er wer 8453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 df-er 8456 |
This theorem is referenced by: ercl2 8469 erthi 8507 qliftfun 8549 efgcpbl2 19278 frgpcpbl 19280 prter3 36823 |
Copyright terms: Public domain | W3C validator |