MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ercl Structured version   Visualization version   GIF version

Theorem ercl 8716
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1 (𝜑𝑅 Er 𝑋)
ersym.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
ercl (𝜑𝐴𝑋)

Proof of Theorem ercl
StepHypRef Expression
1 ersym.1 . . . 4 (𝜑𝑅 Er 𝑋)
2 errel 8714 . . . 4 (𝑅 Er 𝑋 → Rel 𝑅)
31, 2syl 17 . . 3 (𝜑 → Rel 𝑅)
4 ersym.2 . . 3 (𝜑𝐴𝑅𝐵)
5 releldm 5942 . . 3 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
63, 4, 5syl2anc 582 . 2 (𝜑𝐴 ∈ dom 𝑅)
7 erdm 8715 . . 3 (𝑅 Er 𝑋 → dom 𝑅 = 𝑋)
81, 7syl 17 . 2 (𝜑 → dom 𝑅 = 𝑋)
96, 8eleqtrd 2833 1 (𝜑𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104   class class class wbr 5147  dom cdm 5675  Rel wrel 5680   Er wer 8702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-dm 5685  df-er 8705
This theorem is referenced by:  ercl2  8718  erthi  8756  qliftfun  8798  efgcpbl2  19666  frgpcpbl  19668  prter3  38055
  Copyright terms: Public domain W3C validator