| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ercl | Structured version Visualization version GIF version | ||
| Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ersym.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| ersym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Ref | Expression |
|---|---|
| ercl | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersym.1 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 2 | errel 8631 | . . . 4 ⊢ (𝑅 Er 𝑋 → Rel 𝑅) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝑅) |
| 4 | ersym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 5 | releldm 5883 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
| 7 | erdm 8632 | . . 3 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
| 8 | 1, 7 | syl 17 | . 2 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
| 9 | 6, 8 | eleqtrd 2833 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 dom cdm 5614 Rel wrel 5619 Er wer 8619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-er 8622 |
| This theorem is referenced by: ercl2 8635 erthi 8678 qliftfun 8726 efgcpbl2 19669 frgpcpbl 19671 prter3 38991 |
| Copyright terms: Public domain | W3C validator |