![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ercl | Structured version Visualization version GIF version |
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ersym.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
ersym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
ercl | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ersym.1 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
2 | errel 8753 | . . . 4 ⊢ (𝑅 Er 𝑋 → Rel 𝑅) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝑅) |
4 | ersym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
5 | releldm 5958 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
7 | erdm 8754 | . . 3 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
8 | 1, 7 | syl 17 | . 2 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
9 | 6, 8 | eleqtrd 2841 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 dom cdm 5689 Rel wrel 5694 Er wer 8741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-dm 5699 df-er 8744 |
This theorem is referenced by: ercl2 8757 erthi 8797 qliftfun 8841 efgcpbl2 19790 frgpcpbl 19792 prter3 38864 |
Copyright terms: Public domain | W3C validator |