MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ercnv Structured version   Visualization version   GIF version

Theorem ercnv 7918
Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ercnv (𝑅 Er 𝐴𝑅 = 𝑅)

Proof of Theorem ercnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 errel 7906 . 2 (𝑅 Er 𝐴 → Rel 𝑅)
2 relcnv 5645 . . 3 Rel 𝑅
3 id 22 . . . . . 6 (𝑅 Er 𝐴𝑅 Er 𝐴)
43ersymb 7911 . . . . 5 (𝑅 Er 𝐴 → (𝑦𝑅𝑥𝑥𝑅𝑦))
5 vex 3354 . . . . . . 7 𝑥 ∈ V
6 vex 3354 . . . . . . 7 𝑦 ∈ V
75, 6brcnv 5444 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
8 df-br 4788 . . . . . 6 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
97, 8bitr3i 266 . . . . 5 (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
10 df-br 4788 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
114, 9, 103bitr3g 302 . . . 4 (𝑅 Er 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
1211eqrelrdv2 5360 . . 3 (((Rel 𝑅 ∧ Rel 𝑅) ∧ 𝑅 Er 𝐴) → 𝑅 = 𝑅)
132, 12mpanl1 674 . 2 ((Rel 𝑅𝑅 Er 𝐴) → 𝑅 = 𝑅)
141, 13mpancom 662 1 (𝑅 Er 𝐴𝑅 = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  cop 4323   class class class wbr 4787  ccnv 5249  Rel wrel 5255   Er wer 7894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-br 4788  df-opab 4848  df-xp 5256  df-rel 5257  df-cnv 5258  df-er 7897
This theorem is referenced by:  errn  7919
  Copyright terms: Public domain W3C validator