Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ercnv | Structured version Visualization version GIF version |
Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ercnv | ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | errel 8400 | . 2 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) | |
2 | relcnv 5972 | . . 3 ⊢ Rel ◡𝑅 | |
3 | id 22 | . . . . . 6 ⊢ (𝑅 Er 𝐴 → 𝑅 Er 𝐴) | |
4 | 3 | ersymb 8405 | . . . . 5 ⊢ (𝑅 Er 𝐴 → (𝑦𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
5 | vex 3412 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
6 | vex 3412 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
7 | 5, 6 | brcnv 5751 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
8 | df-br 5054 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ◡𝑅) | |
9 | 7, 8 | bitr3i 280 | . . . . 5 ⊢ (𝑦𝑅𝑥 ↔ 〈𝑥, 𝑦〉 ∈ ◡𝑅) |
10 | df-br 5054 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
11 | 4, 9, 10 | 3bitr3g 316 | . . . 4 ⊢ (𝑅 Er 𝐴 → (〈𝑥, 𝑦〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅)) |
12 | 11 | eqrelrdv2 5665 | . . 3 ⊢ (((Rel ◡𝑅 ∧ Rel 𝑅) ∧ 𝑅 Er 𝐴) → ◡𝑅 = 𝑅) |
13 | 2, 12 | mpanl1 700 | . 2 ⊢ ((Rel 𝑅 ∧ 𝑅 Er 𝐴) → ◡𝑅 = 𝑅) |
14 | 1, 13 | mpancom 688 | 1 ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 〈cop 4547 class class class wbr 5053 ◡ccnv 5550 Rel wrel 5556 Er wer 8388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-xp 5557 df-rel 5558 df-cnv 5559 df-er 8391 |
This theorem is referenced by: errn 8413 prjspeclsp 40159 |
Copyright terms: Public domain | W3C validator |