MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ercnv Structured version   Visualization version   GIF version

Theorem ercnv 8719
Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ercnv (𝑅 Er 𝐴𝑅 = 𝑅)

Proof of Theorem ercnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 errel 8707 . 2 (𝑅 Er 𝐴 → Rel 𝑅)
2 relcnv 6099 . . 3 Rel 𝑅
3 id 22 . . . . . 6 (𝑅 Er 𝐴𝑅 Er 𝐴)
43ersymb 8712 . . . . 5 (𝑅 Er 𝐴 → (𝑦𝑅𝑥𝑥𝑅𝑦))
5 vex 3479 . . . . . . 7 𝑥 ∈ V
6 vex 3479 . . . . . . 7 𝑦 ∈ V
75, 6brcnv 5879 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
8 df-br 5147 . . . . . 6 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
97, 8bitr3i 277 . . . . 5 (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
10 df-br 5147 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
114, 9, 103bitr3g 313 . . . 4 (𝑅 Er 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
1211eqrelrdv2 5792 . . 3 (((Rel 𝑅 ∧ Rel 𝑅) ∧ 𝑅 Er 𝐴) → 𝑅 = 𝑅)
132, 12mpanl1 699 . 2 ((Rel 𝑅𝑅 Er 𝐴) → 𝑅 = 𝑅)
141, 13mpancom 687 1 (𝑅 Er 𝐴𝑅 = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cop 4632   class class class wbr 5146  ccnv 5673  Rel wrel 5679   Er wer 8695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-sn 4627  df-pr 4629  df-op 4633  df-br 5147  df-opab 5209  df-xp 5680  df-rel 5681  df-cnv 5682  df-er 8698
This theorem is referenced by:  errn  8720  prjspeclsp  41297
  Copyright terms: Public domain W3C validator