| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ercnv | Structured version Visualization version GIF version | ||
| Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ercnv | ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | errel 8733 | . 2 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) | |
| 2 | relcnv 6096 | . . 3 ⊢ Rel ◡𝑅 | |
| 3 | id 22 | . . . . . 6 ⊢ (𝑅 Er 𝐴 → 𝑅 Er 𝐴) | |
| 4 | 3 | ersymb 8738 | . . . . 5 ⊢ (𝑅 Er 𝐴 → (𝑦𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
| 5 | vex 3468 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 6 | vex 3468 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 7 | 5, 6 | brcnv 5867 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
| 8 | df-br 5125 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ◡𝑅) | |
| 9 | 7, 8 | bitr3i 277 | . . . . 5 ⊢ (𝑦𝑅𝑥 ↔ 〈𝑥, 𝑦〉 ∈ ◡𝑅) |
| 10 | df-br 5125 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
| 11 | 4, 9, 10 | 3bitr3g 313 | . . . 4 ⊢ (𝑅 Er 𝐴 → (〈𝑥, 𝑦〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅)) |
| 12 | 11 | eqrelrdv2 5779 | . . 3 ⊢ (((Rel ◡𝑅 ∧ Rel 𝑅) ∧ 𝑅 Er 𝐴) → ◡𝑅 = 𝑅) |
| 13 | 2, 12 | mpanl1 700 | . 2 ⊢ ((Rel 𝑅 ∧ 𝑅 Er 𝐴) → ◡𝑅 = 𝑅) |
| 14 | 1, 13 | mpancom 688 | 1 ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4612 class class class wbr 5124 ◡ccnv 5658 Rel wrel 5664 Er wer 8721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-er 8724 |
| This theorem is referenced by: errn 8746 prjspeclsp 42602 |
| Copyright terms: Public domain | W3C validator |