![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ercnv | Structured version Visualization version GIF version |
Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ercnv | ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | errel 8707 | . 2 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) | |
2 | relcnv 6099 | . . 3 ⊢ Rel ◡𝑅 | |
3 | id 22 | . . . . . 6 ⊢ (𝑅 Er 𝐴 → 𝑅 Er 𝐴) | |
4 | 3 | ersymb 8712 | . . . . 5 ⊢ (𝑅 Er 𝐴 → (𝑦𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
5 | vex 3479 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
6 | vex 3479 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
7 | 5, 6 | brcnv 5879 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
8 | df-br 5147 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ◡𝑅) | |
9 | 7, 8 | bitr3i 277 | . . . . 5 ⊢ (𝑦𝑅𝑥 ↔ 〈𝑥, 𝑦〉 ∈ ◡𝑅) |
10 | df-br 5147 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
11 | 4, 9, 10 | 3bitr3g 313 | . . . 4 ⊢ (𝑅 Er 𝐴 → (〈𝑥, 𝑦〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅)) |
12 | 11 | eqrelrdv2 5792 | . . 3 ⊢ (((Rel ◡𝑅 ∧ Rel 𝑅) ∧ 𝑅 Er 𝐴) → ◡𝑅 = 𝑅) |
13 | 2, 12 | mpanl1 699 | . 2 ⊢ ((Rel 𝑅 ∧ 𝑅 Er 𝐴) → ◡𝑅 = 𝑅) |
14 | 1, 13 | mpancom 687 | 1 ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 〈cop 4632 class class class wbr 5146 ◡ccnv 5673 Rel wrel 5679 Er wer 8695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5297 ax-nul 5304 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4527 df-sn 4627 df-pr 4629 df-op 4633 df-br 5147 df-opab 5209 df-xp 5680 df-rel 5681 df-cnv 5682 df-er 8698 |
This theorem is referenced by: errn 8720 prjspeclsp 41297 |
Copyright terms: Public domain | W3C validator |