MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erssxp Structured version   Visualization version   GIF version

Theorem erssxp 8648
Description: An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erssxp (𝑅 Er 𝐴𝑅 ⊆ (𝐴 × 𝐴))

Proof of Theorem erssxp
StepHypRef Expression
1 errel 8634 . . 3 (𝑅 Er 𝐴 → Rel 𝑅)
2 relssdmrn 6217 . . 3 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
31, 2syl 17 . 2 (𝑅 Er 𝐴𝑅 ⊆ (dom 𝑅 × ran 𝑅))
4 erdm 8635 . . 3 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
5 errn 8647 . . 3 (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
64, 5xpeq12d 5650 . 2 (𝑅 Er 𝐴 → (dom 𝑅 × ran 𝑅) = (𝐴 × 𝐴))
73, 6sseqtrd 3972 1 (𝑅 Er 𝐴𝑅 ⊆ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3903   × cxp 5617  dom cdm 5619  ran crn 5620  Rel wrel 5624   Er wer 8622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-er 8625
This theorem is referenced by:  erex  8649  riiner  8717  efgval  19596  qtophaus  33809
  Copyright terms: Public domain W3C validator