![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erssxp | Structured version Visualization version GIF version |
Description: An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erssxp | ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | errel 8709 | . . 3 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) | |
2 | relssdmrn 6265 | . . 3 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) |
4 | erdm 8710 | . . 3 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
5 | errn 8722 | . . 3 ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) | |
6 | 4, 5 | xpeq12d 5707 | . 2 ⊢ (𝑅 Er 𝐴 → (dom 𝑅 × ran 𝑅) = (𝐴 × 𝐴)) |
7 | 3, 6 | sseqtrd 4022 | 1 ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3948 × cxp 5674 dom cdm 5676 ran crn 5677 Rel wrel 5681 Er wer 8697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-er 8700 |
This theorem is referenced by: erex 8724 riiner 8781 efgval 19580 qtophaus 32805 |
Copyright terms: Public domain | W3C validator |