![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erssxp | Structured version Visualization version GIF version |
Description: An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erssxp | ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | errel 8772 | . . 3 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) | |
2 | relssdmrn 6299 | . . 3 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) |
4 | erdm 8773 | . . 3 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
5 | errn 8785 | . . 3 ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) | |
6 | 4, 5 | xpeq12d 5731 | . 2 ⊢ (𝑅 Er 𝐴 → (dom 𝑅 × ran 𝑅) = (𝐴 × 𝐴)) |
7 | 3, 6 | sseqtrd 4049 | 1 ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 × cxp 5698 dom cdm 5700 ran crn 5701 Rel wrel 5705 Er wer 8760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-er 8763 |
This theorem is referenced by: erex 8787 riiner 8848 efgval 19759 qtophaus 33782 |
Copyright terms: Public domain | W3C validator |