MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erssxp Structured version   Visualization version   GIF version

Theorem erssxp 8645
Description: An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erssxp (𝑅 Er 𝐴𝑅 ⊆ (𝐴 × 𝐴))

Proof of Theorem erssxp
StepHypRef Expression
1 errel 8631 . . 3 (𝑅 Er 𝐴 → Rel 𝑅)
2 relssdmrn 6216 . . 3 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
31, 2syl 17 . 2 (𝑅 Er 𝐴𝑅 ⊆ (dom 𝑅 × ran 𝑅))
4 erdm 8632 . . 3 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
5 errn 8644 . . 3 (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
64, 5xpeq12d 5645 . 2 (𝑅 Er 𝐴 → (dom 𝑅 × ran 𝑅) = (𝐴 × 𝐴))
73, 6sseqtrd 3966 1 (𝑅 Er 𝐴𝑅 ⊆ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3897   × cxp 5612  dom cdm 5614  ran crn 5615  Rel wrel 5619   Er wer 8619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-er 8622
This theorem is referenced by:  erex  8646  riiner  8714  efgval  19629  qtophaus  33849
  Copyright terms: Public domain W3C validator