![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > topfneec | Structured version Visualization version GIF version |
Description: A cover is equivalent to a topology iff it is a base for that topology. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
topfneec.1 | ⊢ ∼ = (Fne ∩ ◡Fne) |
Ref | Expression |
---|---|
topfneec | ⊢ (𝐽 ∈ Top → (𝐴 ∈ [𝐽] ∼ ↔ (topGen‘𝐴) = 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topfneec.1 | . . . . 5 ⊢ ∼ = (Fne ∩ ◡Fne) | |
2 | 1 | fneer 36319 | . . . 4 ⊢ ∼ Er V |
3 | errel 8772 | . . . 4 ⊢ ( ∼ Er V → Rel ∼ ) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ Rel ∼ |
5 | relelec 8810 | . . 3 ⊢ (Rel ∼ → (𝐴 ∈ [𝐽] ∼ ↔ 𝐽 ∼ 𝐴)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ [𝐽] ∼ ↔ 𝐽 ∼ 𝐴) |
7 | 4 | brrelex2i 5757 | . . . 4 ⊢ (𝐽 ∼ 𝐴 → 𝐴 ∈ V) |
8 | 7 | a1i 11 | . . 3 ⊢ (𝐽 ∈ Top → (𝐽 ∼ 𝐴 → 𝐴 ∈ V)) |
9 | eleq1 2832 | . . . . . . 7 ⊢ ((topGen‘𝐴) = 𝐽 → ((topGen‘𝐴) ∈ Top ↔ 𝐽 ∈ Top)) | |
10 | 9 | biimparc 479 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → (topGen‘𝐴) ∈ Top) |
11 | tgclb 22998 | . . . . . 6 ⊢ (𝐴 ∈ TopBases ↔ (topGen‘𝐴) ∈ Top) | |
12 | 10, 11 | sylibr 234 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → 𝐴 ∈ TopBases) |
13 | elex 3509 | . . . . 5 ⊢ (𝐴 ∈ TopBases → 𝐴 ∈ V) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → 𝐴 ∈ V) |
15 | 14 | ex 412 | . . 3 ⊢ (𝐽 ∈ Top → ((topGen‘𝐴) = 𝐽 → 𝐴 ∈ V)) |
16 | 1 | fneval 36318 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ∼ 𝐴 ↔ (topGen‘𝐽) = (topGen‘𝐴))) |
17 | tgtop 23001 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
18 | 17 | eqeq1d 2742 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ((topGen‘𝐽) = (topGen‘𝐴) ↔ 𝐽 = (topGen‘𝐴))) |
19 | eqcom 2747 | . . . . . . 7 ⊢ (𝐽 = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽) | |
20 | 18, 19 | bitrdi 287 | . . . . . 6 ⊢ (𝐽 ∈ Top → ((topGen‘𝐽) = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽)) |
21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → ((topGen‘𝐽) = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽)) |
22 | 16, 21 | bitrd 279 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ∼ 𝐴 ↔ (topGen‘𝐴) = 𝐽)) |
23 | 22 | ex 412 | . . 3 ⊢ (𝐽 ∈ Top → (𝐴 ∈ V → (𝐽 ∼ 𝐴 ↔ (topGen‘𝐴) = 𝐽))) |
24 | 8, 15, 23 | pm5.21ndd 379 | . 2 ⊢ (𝐽 ∈ Top → (𝐽 ∼ 𝐴 ↔ (topGen‘𝐴) = 𝐽)) |
25 | 6, 24 | bitrid 283 | 1 ⊢ (𝐽 ∈ Top → (𝐴 ∈ [𝐽] ∼ ↔ (topGen‘𝐴) = 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 class class class wbr 5166 ◡ccnv 5699 Rel wrel 5705 ‘cfv 6573 Er wer 8760 [cec 8761 topGenctg 17497 Topctop 22920 TopBasesctb 22973 Fnecfne 36302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-er 8763 df-ec 8765 df-topgen 17503 df-top 22921 df-bases 22974 df-fne 36303 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |