![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > topfneec | Structured version Visualization version GIF version |
Description: A cover is equivalent to a topology iff it is a base for that topology. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
topfneec.1 | ⊢ ∼ = (Fne ∩ ◡Fne) |
Ref | Expression |
---|---|
topfneec | ⊢ (𝐽 ∈ Top → (𝐴 ∈ [𝐽] ∼ ↔ (topGen‘𝐴) = 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topfneec.1 | . . . . 5 ⊢ ∼ = (Fne ∩ ◡Fne) | |
2 | 1 | fneer 35694 | . . . 4 ⊢ ∼ Er V |
3 | errel 8707 | . . . 4 ⊢ ( ∼ Er V → Rel ∼ ) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ Rel ∼ |
5 | relelec 8743 | . . 3 ⊢ (Rel ∼ → (𝐴 ∈ [𝐽] ∼ ↔ 𝐽 ∼ 𝐴)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ [𝐽] ∼ ↔ 𝐽 ∼ 𝐴) |
7 | 4 | brrelex2i 5723 | . . . 4 ⊢ (𝐽 ∼ 𝐴 → 𝐴 ∈ V) |
8 | 7 | a1i 11 | . . 3 ⊢ (𝐽 ∈ Top → (𝐽 ∼ 𝐴 → 𝐴 ∈ V)) |
9 | eleq1 2813 | . . . . . . 7 ⊢ ((topGen‘𝐴) = 𝐽 → ((topGen‘𝐴) ∈ Top ↔ 𝐽 ∈ Top)) | |
10 | 9 | biimparc 479 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → (topGen‘𝐴) ∈ Top) |
11 | tgclb 22794 | . . . . . 6 ⊢ (𝐴 ∈ TopBases ↔ (topGen‘𝐴) ∈ Top) | |
12 | 10, 11 | sylibr 233 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → 𝐴 ∈ TopBases) |
13 | elex 3485 | . . . . 5 ⊢ (𝐴 ∈ TopBases → 𝐴 ∈ V) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → 𝐴 ∈ V) |
15 | 14 | ex 412 | . . 3 ⊢ (𝐽 ∈ Top → ((topGen‘𝐴) = 𝐽 → 𝐴 ∈ V)) |
16 | 1 | fneval 35693 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ∼ 𝐴 ↔ (topGen‘𝐽) = (topGen‘𝐴))) |
17 | tgtop 22797 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
18 | 17 | eqeq1d 2726 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ((topGen‘𝐽) = (topGen‘𝐴) ↔ 𝐽 = (topGen‘𝐴))) |
19 | eqcom 2731 | . . . . . . 7 ⊢ (𝐽 = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽) | |
20 | 18, 19 | bitrdi 287 | . . . . . 6 ⊢ (𝐽 ∈ Top → ((topGen‘𝐽) = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽)) |
21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → ((topGen‘𝐽) = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽)) |
22 | 16, 21 | bitrd 279 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ∼ 𝐴 ↔ (topGen‘𝐴) = 𝐽)) |
23 | 22 | ex 412 | . . 3 ⊢ (𝐽 ∈ Top → (𝐴 ∈ V → (𝐽 ∼ 𝐴 ↔ (topGen‘𝐴) = 𝐽))) |
24 | 8, 15, 23 | pm5.21ndd 379 | . 2 ⊢ (𝐽 ∈ Top → (𝐽 ∼ 𝐴 ↔ (topGen‘𝐴) = 𝐽)) |
25 | 6, 24 | bitrid 283 | 1 ⊢ (𝐽 ∈ Top → (𝐴 ∈ [𝐽] ∼ ↔ (topGen‘𝐴) = 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∩ cin 3939 class class class wbr 5138 ◡ccnv 5665 Rel wrel 5671 ‘cfv 6533 Er wer 8695 [cec 8696 topGenctg 17381 Topctop 22716 TopBasesctb 22769 Fnecfne 35677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fv 6541 df-er 8698 df-ec 8700 df-topgen 17387 df-top 22717 df-bases 22770 df-fne 35678 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |