Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topfneec Structured version   Visualization version   GIF version

Theorem topfneec 36350
Description: A cover is equivalent to a topology iff it is a base for that topology. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
topfneec.1 = (Fne ∩ Fne)
Assertion
Ref Expression
topfneec (𝐽 ∈ Top → (𝐴 ∈ [𝐽] ↔ (topGen‘𝐴) = 𝐽))

Proof of Theorem topfneec
StepHypRef Expression
1 topfneec.1 . . . . 5 = (Fne ∩ Fne)
21fneer 36348 . . . 4 Er V
3 errel 8683 . . . 4 ( Er V → Rel )
42, 3ax-mp 5 . . 3 Rel
5 relelec 8721 . . 3 (Rel → (𝐴 ∈ [𝐽] 𝐽 𝐴))
64, 5ax-mp 5 . 2 (𝐴 ∈ [𝐽] 𝐽 𝐴)
74brrelex2i 5698 . . . 4 (𝐽 𝐴𝐴 ∈ V)
87a1i 11 . . 3 (𝐽 ∈ Top → (𝐽 𝐴𝐴 ∈ V))
9 eleq1 2817 . . . . . . 7 ((topGen‘𝐴) = 𝐽 → ((topGen‘𝐴) ∈ Top ↔ 𝐽 ∈ Top))
109biimparc 479 . . . . . 6 ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → (topGen‘𝐴) ∈ Top)
11 tgclb 22864 . . . . . 6 (𝐴 ∈ TopBases ↔ (topGen‘𝐴) ∈ Top)
1210, 11sylibr 234 . . . . 5 ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → 𝐴 ∈ TopBases)
13 elex 3471 . . . . 5 (𝐴 ∈ TopBases → 𝐴 ∈ V)
1412, 13syl 17 . . . 4 ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → 𝐴 ∈ V)
1514ex 412 . . 3 (𝐽 ∈ Top → ((topGen‘𝐴) = 𝐽𝐴 ∈ V))
161fneval 36347 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 𝐴 ↔ (topGen‘𝐽) = (topGen‘𝐴)))
17 tgtop 22867 . . . . . . . 8 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
1817eqeq1d 2732 . . . . . . 7 (𝐽 ∈ Top → ((topGen‘𝐽) = (topGen‘𝐴) ↔ 𝐽 = (topGen‘𝐴)))
19 eqcom 2737 . . . . . . 7 (𝐽 = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽)
2018, 19bitrdi 287 . . . . . 6 (𝐽 ∈ Top → ((topGen‘𝐽) = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽))
2120adantr 480 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → ((topGen‘𝐽) = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽))
2216, 21bitrd 279 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 𝐴 ↔ (topGen‘𝐴) = 𝐽))
2322ex 412 . . 3 (𝐽 ∈ Top → (𝐴 ∈ V → (𝐽 𝐴 ↔ (topGen‘𝐴) = 𝐽)))
248, 15, 23pm5.21ndd 379 . 2 (𝐽 ∈ Top → (𝐽 𝐴 ↔ (topGen‘𝐴) = 𝐽))
256, 24bitrid 283 1 (𝐽 ∈ Top → (𝐴 ∈ [𝐽] ↔ (topGen‘𝐴) = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916   class class class wbr 5110  ccnv 5640  Rel wrel 5646  cfv 6514   Er wer 8671  [cec 8672  topGenctg 17407  Topctop 22787  TopBasesctb 22839  Fnecfne 36331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-er 8674  df-ec 8676  df-topgen 17413  df-top 22788  df-bases 22840  df-fne 36332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator