| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > topfneec | Structured version Visualization version GIF version | ||
| Description: A cover is equivalent to a topology iff it is a base for that topology. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| topfneec.1 | ⊢ ∼ = (Fne ∩ ◡Fne) |
| Ref | Expression |
|---|---|
| topfneec | ⊢ (𝐽 ∈ Top → (𝐴 ∈ [𝐽] ∼ ↔ (topGen‘𝐴) = 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topfneec.1 | . . . . 5 ⊢ ∼ = (Fne ∩ ◡Fne) | |
| 2 | 1 | fneer 36331 | . . . 4 ⊢ ∼ Er V |
| 3 | errel 8634 | . . . 4 ⊢ ( ∼ Er V → Rel ∼ ) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ Rel ∼ |
| 5 | relelec 8672 | . . 3 ⊢ (Rel ∼ → (𝐴 ∈ [𝐽] ∼ ↔ 𝐽 ∼ 𝐴)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ [𝐽] ∼ ↔ 𝐽 ∼ 𝐴) |
| 7 | 4 | brrelex2i 5676 | . . . 4 ⊢ (𝐽 ∼ 𝐴 → 𝐴 ∈ V) |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝐽 ∈ Top → (𝐽 ∼ 𝐴 → 𝐴 ∈ V)) |
| 9 | eleq1 2816 | . . . . . . 7 ⊢ ((topGen‘𝐴) = 𝐽 → ((topGen‘𝐴) ∈ Top ↔ 𝐽 ∈ Top)) | |
| 10 | 9 | biimparc 479 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → (topGen‘𝐴) ∈ Top) |
| 11 | tgclb 22855 | . . . . . 6 ⊢ (𝐴 ∈ TopBases ↔ (topGen‘𝐴) ∈ Top) | |
| 12 | 10, 11 | sylibr 234 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → 𝐴 ∈ TopBases) |
| 13 | elex 3457 | . . . . 5 ⊢ (𝐴 ∈ TopBases → 𝐴 ∈ V) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → 𝐴 ∈ V) |
| 15 | 14 | ex 412 | . . 3 ⊢ (𝐽 ∈ Top → ((topGen‘𝐴) = 𝐽 → 𝐴 ∈ V)) |
| 16 | 1 | fneval 36330 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ∼ 𝐴 ↔ (topGen‘𝐽) = (topGen‘𝐴))) |
| 17 | tgtop 22858 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
| 18 | 17 | eqeq1d 2731 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ((topGen‘𝐽) = (topGen‘𝐴) ↔ 𝐽 = (topGen‘𝐴))) |
| 19 | eqcom 2736 | . . . . . . 7 ⊢ (𝐽 = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽) | |
| 20 | 18, 19 | bitrdi 287 | . . . . . 6 ⊢ (𝐽 ∈ Top → ((topGen‘𝐽) = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽)) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → ((topGen‘𝐽) = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽)) |
| 22 | 16, 21 | bitrd 279 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ∼ 𝐴 ↔ (topGen‘𝐴) = 𝐽)) |
| 23 | 22 | ex 412 | . . 3 ⊢ (𝐽 ∈ Top → (𝐴 ∈ V → (𝐽 ∼ 𝐴 ↔ (topGen‘𝐴) = 𝐽))) |
| 24 | 8, 15, 23 | pm5.21ndd 379 | . 2 ⊢ (𝐽 ∈ Top → (𝐽 ∼ 𝐴 ↔ (topGen‘𝐴) = 𝐽)) |
| 25 | 6, 24 | bitrid 283 | 1 ⊢ (𝐽 ∈ Top → (𝐴 ∈ [𝐽] ∼ ↔ (topGen‘𝐴) = 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 class class class wbr 5092 ◡ccnv 5618 Rel wrel 5624 ‘cfv 6482 Er wer 8622 [cec 8623 topGenctg 17341 Topctop 22778 TopBasesctb 22830 Fnecfne 36314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fv 6490 df-er 8625 df-ec 8627 df-topgen 17347 df-top 22779 df-bases 22831 df-fne 36315 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |