Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > topfneec | Structured version Visualization version GIF version |
Description: A cover is equivalent to a topology iff it is a base for that topology. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
topfneec.1 | ⊢ ∼ = (Fne ∩ ◡Fne) |
Ref | Expression |
---|---|
topfneec | ⊢ (𝐽 ∈ Top → (𝐴 ∈ [𝐽] ∼ ↔ (topGen‘𝐴) = 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topfneec.1 | . . . . 5 ⊢ ∼ = (Fne ∩ ◡Fne) | |
2 | 1 | fneer 34469 | . . . 4 ⊢ ∼ Er V |
3 | errel 8465 | . . . 4 ⊢ ( ∼ Er V → Rel ∼ ) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ Rel ∼ |
5 | relelec 8501 | . . 3 ⊢ (Rel ∼ → (𝐴 ∈ [𝐽] ∼ ↔ 𝐽 ∼ 𝐴)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ [𝐽] ∼ ↔ 𝐽 ∼ 𝐴) |
7 | 4 | brrelex2i 5635 | . . . 4 ⊢ (𝐽 ∼ 𝐴 → 𝐴 ∈ V) |
8 | 7 | a1i 11 | . . 3 ⊢ (𝐽 ∈ Top → (𝐽 ∼ 𝐴 → 𝐴 ∈ V)) |
9 | eleq1 2826 | . . . . . . 7 ⊢ ((topGen‘𝐴) = 𝐽 → ((topGen‘𝐴) ∈ Top ↔ 𝐽 ∈ Top)) | |
10 | 9 | biimparc 479 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → (topGen‘𝐴) ∈ Top) |
11 | tgclb 22028 | . . . . . 6 ⊢ (𝐴 ∈ TopBases ↔ (topGen‘𝐴) ∈ Top) | |
12 | 10, 11 | sylibr 233 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → 𝐴 ∈ TopBases) |
13 | elex 3440 | . . . . 5 ⊢ (𝐴 ∈ TopBases → 𝐴 ∈ V) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → 𝐴 ∈ V) |
15 | 14 | ex 412 | . . 3 ⊢ (𝐽 ∈ Top → ((topGen‘𝐴) = 𝐽 → 𝐴 ∈ V)) |
16 | 1 | fneval 34468 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ∼ 𝐴 ↔ (topGen‘𝐽) = (topGen‘𝐴))) |
17 | tgtop 22031 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
18 | 17 | eqeq1d 2740 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ((topGen‘𝐽) = (topGen‘𝐴) ↔ 𝐽 = (topGen‘𝐴))) |
19 | eqcom 2745 | . . . . . . 7 ⊢ (𝐽 = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽) | |
20 | 18, 19 | bitrdi 286 | . . . . . 6 ⊢ (𝐽 ∈ Top → ((topGen‘𝐽) = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽)) |
21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → ((topGen‘𝐽) = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽)) |
22 | 16, 21 | bitrd 278 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ∼ 𝐴 ↔ (topGen‘𝐴) = 𝐽)) |
23 | 22 | ex 412 | . . 3 ⊢ (𝐽 ∈ Top → (𝐴 ∈ V → (𝐽 ∼ 𝐴 ↔ (topGen‘𝐴) = 𝐽))) |
24 | 8, 15, 23 | pm5.21ndd 380 | . 2 ⊢ (𝐽 ∈ Top → (𝐽 ∼ 𝐴 ↔ (topGen‘𝐴) = 𝐽)) |
25 | 6, 24 | syl5bb 282 | 1 ⊢ (𝐽 ∈ Top → (𝐴 ∈ [𝐽] ∼ ↔ (topGen‘𝐴) = 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 class class class wbr 5070 ◡ccnv 5579 Rel wrel 5585 ‘cfv 6418 Er wer 8453 [cec 8454 topGenctg 17065 Topctop 21950 TopBasesctb 22003 Fnecfne 34452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-er 8456 df-ec 8458 df-topgen 17071 df-top 21951 df-bases 22004 df-fne 34453 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |