Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topfneec Structured version   Visualization version   GIF version

Theorem topfneec 36316
Description: A cover is equivalent to a topology iff it is a base for that topology. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
topfneec.1 = (Fne ∩ Fne)
Assertion
Ref Expression
topfneec (𝐽 ∈ Top → (𝐴 ∈ [𝐽] ↔ (topGen‘𝐴) = 𝐽))

Proof of Theorem topfneec
StepHypRef Expression
1 topfneec.1 . . . . 5 = (Fne ∩ Fne)
21fneer 36314 . . . 4 Er V
3 errel 8657 . . . 4 ( Er V → Rel )
42, 3ax-mp 5 . . 3 Rel
5 relelec 8695 . . 3 (Rel → (𝐴 ∈ [𝐽] 𝐽 𝐴))
64, 5ax-mp 5 . 2 (𝐴 ∈ [𝐽] 𝐽 𝐴)
74brrelex2i 5688 . . . 4 (𝐽 𝐴𝐴 ∈ V)
87a1i 11 . . 3 (𝐽 ∈ Top → (𝐽 𝐴𝐴 ∈ V))
9 eleq1 2816 . . . . . . 7 ((topGen‘𝐴) = 𝐽 → ((topGen‘𝐴) ∈ Top ↔ 𝐽 ∈ Top))
109biimparc 479 . . . . . 6 ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → (topGen‘𝐴) ∈ Top)
11 tgclb 22833 . . . . . 6 (𝐴 ∈ TopBases ↔ (topGen‘𝐴) ∈ Top)
1210, 11sylibr 234 . . . . 5 ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → 𝐴 ∈ TopBases)
13 elex 3465 . . . . 5 (𝐴 ∈ TopBases → 𝐴 ∈ V)
1412, 13syl 17 . . . 4 ((𝐽 ∈ Top ∧ (topGen‘𝐴) = 𝐽) → 𝐴 ∈ V)
1514ex 412 . . 3 (𝐽 ∈ Top → ((topGen‘𝐴) = 𝐽𝐴 ∈ V))
161fneval 36313 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 𝐴 ↔ (topGen‘𝐽) = (topGen‘𝐴)))
17 tgtop 22836 . . . . . . . 8 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
1817eqeq1d 2731 . . . . . . 7 (𝐽 ∈ Top → ((topGen‘𝐽) = (topGen‘𝐴) ↔ 𝐽 = (topGen‘𝐴)))
19 eqcom 2736 . . . . . . 7 (𝐽 = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽)
2018, 19bitrdi 287 . . . . . 6 (𝐽 ∈ Top → ((topGen‘𝐽) = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽))
2120adantr 480 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → ((topGen‘𝐽) = (topGen‘𝐴) ↔ (topGen‘𝐴) = 𝐽))
2216, 21bitrd 279 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 𝐴 ↔ (topGen‘𝐴) = 𝐽))
2322ex 412 . . 3 (𝐽 ∈ Top → (𝐴 ∈ V → (𝐽 𝐴 ↔ (topGen‘𝐴) = 𝐽)))
248, 15, 23pm5.21ndd 379 . 2 (𝐽 ∈ Top → (𝐽 𝐴 ↔ (topGen‘𝐴) = 𝐽))
256, 24bitrid 283 1 (𝐽 ∈ Top → (𝐴 ∈ [𝐽] ↔ (topGen‘𝐴) = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cin 3910   class class class wbr 5102  ccnv 5630  Rel wrel 5636  cfv 6499   Er wer 8645  [cec 8646  topGenctg 17376  Topctop 22756  TopBasesctb 22808  Fnecfne 36297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fv 6507  df-er 8648  df-ec 8650  df-topgen 17382  df-top 22757  df-bases 22809  df-fne 36298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator