| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qusxpid | Structured version Visualization version GIF version | ||
| Description: The Group quotient equivalence relation for the whole group is the cartesian product, i.e. all elements are in the same equivalence class. (Contributed by Thierry Arnoux, 16-Jan-2024.) |
| Ref | Expression |
|---|---|
| qustriv.1 | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| qusxpid | ⊢ (𝐺 ∈ Grp → (𝐺 ~QG 𝐵) = (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qustriv.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | subgid 19060 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
| 3 | eqid 2729 | . . . 4 ⊢ (𝐺 ~QG 𝐵) = (𝐺 ~QG 𝐵) | |
| 4 | 1, 3 | eqger 19110 | . . 3 ⊢ (𝐵 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐵) Er 𝐵) |
| 5 | errel 8680 | . . 3 ⊢ ((𝐺 ~QG 𝐵) Er 𝐵 → Rel (𝐺 ~QG 𝐵)) | |
| 6 | 2, 4, 5 | 3syl 18 | . 2 ⊢ (𝐺 ∈ Grp → Rel (𝐺 ~QG 𝐵)) |
| 7 | relxp 5656 | . . 3 ⊢ Rel (𝐵 × 𝐵) | |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝐺 ∈ Grp → Rel (𝐵 × 𝐵)) |
| 9 | df-3an 1088 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵)) | |
| 10 | simpl 482 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Grp) | |
| 11 | eqid 2729 | . . . . . . . . 9 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 12 | 1, 11 | grpinvcl 18919 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
| 13 | 12 | adantrr 717 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
| 14 | simprr 772 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
| 15 | eqid 2729 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 16 | 1, 15 | grpcl 18873 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵) |
| 17 | 10, 13, 14, 16 | syl3anc 1373 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵) |
| 18 | 17 | ex 412 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵)) |
| 19 | 18 | pm4.71d 561 | . . . 4 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵))) |
| 20 | 9, 19 | bitr4id 290 | . . 3 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
| 21 | ssid 3969 | . . . 4 ⊢ 𝐵 ⊆ 𝐵 | |
| 22 | 1, 11, 15, 3 | eqgval 19109 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ⊆ 𝐵) → (𝑥(𝐺 ~QG 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵))) |
| 23 | 21, 22 | mpan2 691 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑥(𝐺 ~QG 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵))) |
| 24 | brxp 5687 | . . . 4 ⊢ (𝑥(𝐵 × 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) | |
| 25 | 24 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑥(𝐵 × 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
| 26 | 20, 23, 25 | 3bitr4d 311 | . 2 ⊢ (𝐺 ∈ Grp → (𝑥(𝐺 ~QG 𝐵)𝑦 ↔ 𝑥(𝐵 × 𝐵)𝑦)) |
| 27 | 6, 8, 26 | eqbrrdv 5756 | 1 ⊢ (𝐺 ∈ Grp → (𝐺 ~QG 𝐵) = (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 × cxp 5636 Rel wrel 5643 ‘cfv 6511 (class class class)co 7387 Er wer 8668 Basecbs 17179 +gcplusg 17220 Grpcgrp 18865 invgcminusg 18866 SubGrpcsubg 19052 ~QG cqg 19054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-subg 19055 df-eqg 19057 |
| This theorem is referenced by: qustriv 33335 |
| Copyright terms: Public domain | W3C validator |