Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusxpid Structured version   Visualization version   GIF version

Theorem qusxpid 32981
Description: The Group quotient equivalence relation for the whole group is the cartesian product, i.e. all elements are in the same equivalence class. (Contributed by Thierry Arnoux, 16-Jan-2024.)
Hypothesis
Ref Expression
qustriv.1 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
qusxpid (𝐺 ∈ Grp → (𝐺 ~QG 𝐵) = (𝐵 × 𝐵))

Proof of Theorem qusxpid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qustriv.1 . . . 4 𝐵 = (Base‘𝐺)
21subgid 19052 . . 3 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
3 eqid 2726 . . . 4 (𝐺 ~QG 𝐵) = (𝐺 ~QG 𝐵)
41, 3eqger 19102 . . 3 (𝐵 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐵) Er 𝐵)
5 errel 8711 . . 3 ((𝐺 ~QG 𝐵) Er 𝐵 → Rel (𝐺 ~QG 𝐵))
62, 4, 53syl 18 . 2 (𝐺 ∈ Grp → Rel (𝐺 ~QG 𝐵))
7 relxp 5687 . . 3 Rel (𝐵 × 𝐵)
87a1i 11 . 2 (𝐺 ∈ Grp → Rel (𝐵 × 𝐵))
9 df-3an 1086 . . . 4 ((𝑥𝐵𝑦𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵) ↔ ((𝑥𝐵𝑦𝐵) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵))
10 simpl 482 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
11 eqid 2726 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
121, 11grpinvcl 18914 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
1312adantrr 714 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑥) ∈ 𝐵)
14 simprr 770 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
15 eqid 2726 . . . . . . . 8 (+g𝐺) = (+g𝐺)
161, 15grpcl 18868 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑥) ∈ 𝐵𝑦𝐵) → (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵)
1710, 13, 14, 16syl3anc 1368 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵)
1817ex 412 . . . . 5 (𝐺 ∈ Grp → ((𝑥𝐵𝑦𝐵) → (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵))
1918pm4.71d 561 . . . 4 (𝐺 ∈ Grp → ((𝑥𝐵𝑦𝐵) ↔ ((𝑥𝐵𝑦𝐵) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵)))
209, 19bitr4id 290 . . 3 (𝐺 ∈ Grp → ((𝑥𝐵𝑦𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵) ↔ (𝑥𝐵𝑦𝐵)))
21 ssid 3999 . . . 4 𝐵𝐵
221, 11, 15, 3eqgval 19101 . . . 4 ((𝐺 ∈ Grp ∧ 𝐵𝐵) → (𝑥(𝐺 ~QG 𝐵)𝑦 ↔ (𝑥𝐵𝑦𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵)))
2321, 22mpan2 688 . . 3 (𝐺 ∈ Grp → (𝑥(𝐺 ~QG 𝐵)𝑦 ↔ (𝑥𝐵𝑦𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵)))
24 brxp 5718 . . . 4 (𝑥(𝐵 × 𝐵)𝑦 ↔ (𝑥𝐵𝑦𝐵))
2524a1i 11 . . 3 (𝐺 ∈ Grp → (𝑥(𝐵 × 𝐵)𝑦 ↔ (𝑥𝐵𝑦𝐵)))
2620, 23, 253bitr4d 311 . 2 (𝐺 ∈ Grp → (𝑥(𝐺 ~QG 𝐵)𝑦𝑥(𝐵 × 𝐵)𝑦))
276, 8, 26eqbrrdv 5786 1 (𝐺 ∈ Grp → (𝐺 ~QG 𝐵) = (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wss 3943   class class class wbr 5141   × cxp 5667  Rel wrel 5674  cfv 6536  (class class class)co 7404   Er wer 8699  Basecbs 17150  +gcplusg 17203  Grpcgrp 18860  invgcminusg 18861  SubGrpcsubg 19044   ~QG cqg 19046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-ress 17180  df-plusg 17216  df-0g 17393  df-mgm 18570  df-sgrp 18649  df-mnd 18665  df-grp 18863  df-minusg 18864  df-subg 19047  df-eqg 19049
This theorem is referenced by:  qustriv  32982
  Copyright terms: Public domain W3C validator