Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusxpid Structured version   Visualization version   GIF version

Theorem qusxpid 33310
Description: The Group quotient equivalence relation for the whole group is the cartesian product, i.e. all elements are in the same equivalence class. (Contributed by Thierry Arnoux, 16-Jan-2024.)
Hypothesis
Ref Expression
qustriv.1 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
qusxpid (𝐺 ∈ Grp → (𝐺 ~QG 𝐵) = (𝐵 × 𝐵))

Proof of Theorem qusxpid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qustriv.1 . . . 4 𝐵 = (Base‘𝐺)
21subgid 19025 . . 3 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
3 eqid 2729 . . . 4 (𝐺 ~QG 𝐵) = (𝐺 ~QG 𝐵)
41, 3eqger 19075 . . 3 (𝐵 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐵) Er 𝐵)
5 errel 8641 . . 3 ((𝐺 ~QG 𝐵) Er 𝐵 → Rel (𝐺 ~QG 𝐵))
62, 4, 53syl 18 . 2 (𝐺 ∈ Grp → Rel (𝐺 ~QG 𝐵))
7 relxp 5641 . . 3 Rel (𝐵 × 𝐵)
87a1i 11 . 2 (𝐺 ∈ Grp → Rel (𝐵 × 𝐵))
9 df-3an 1088 . . . 4 ((𝑥𝐵𝑦𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵) ↔ ((𝑥𝐵𝑦𝐵) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵))
10 simpl 482 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
11 eqid 2729 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
121, 11grpinvcl 18884 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
1312adantrr 717 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑥) ∈ 𝐵)
14 simprr 772 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
15 eqid 2729 . . . . . . . 8 (+g𝐺) = (+g𝐺)
161, 15grpcl 18838 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑥) ∈ 𝐵𝑦𝐵) → (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵)
1710, 13, 14, 16syl3anc 1373 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵)
1817ex 412 . . . . 5 (𝐺 ∈ Grp → ((𝑥𝐵𝑦𝐵) → (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵))
1918pm4.71d 561 . . . 4 (𝐺 ∈ Grp → ((𝑥𝐵𝑦𝐵) ↔ ((𝑥𝐵𝑦𝐵) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵)))
209, 19bitr4id 290 . . 3 (𝐺 ∈ Grp → ((𝑥𝐵𝑦𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵) ↔ (𝑥𝐵𝑦𝐵)))
21 ssid 3960 . . . 4 𝐵𝐵
221, 11, 15, 3eqgval 19074 . . . 4 ((𝐺 ∈ Grp ∧ 𝐵𝐵) → (𝑥(𝐺 ~QG 𝐵)𝑦 ↔ (𝑥𝐵𝑦𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵)))
2321, 22mpan2 691 . . 3 (𝐺 ∈ Grp → (𝑥(𝐺 ~QG 𝐵)𝑦 ↔ (𝑥𝐵𝑦𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝐵)))
24 brxp 5672 . . . 4 (𝑥(𝐵 × 𝐵)𝑦 ↔ (𝑥𝐵𝑦𝐵))
2524a1i 11 . . 3 (𝐺 ∈ Grp → (𝑥(𝐵 × 𝐵)𝑦 ↔ (𝑥𝐵𝑦𝐵)))
2620, 23, 253bitr4d 311 . 2 (𝐺 ∈ Grp → (𝑥(𝐺 ~QG 𝐵)𝑦𝑥(𝐵 × 𝐵)𝑦))
276, 8, 26eqbrrdv 5740 1 (𝐺 ∈ Grp → (𝐺 ~QG 𝐵) = (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3905   class class class wbr 5095   × cxp 5621  Rel wrel 5628  cfv 6486  (class class class)co 7353   Er wer 8629  Basecbs 17138  +gcplusg 17179  Grpcgrp 18830  invgcminusg 18831  SubGrpcsubg 19017   ~QG cqg 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-subg 19020  df-eqg 19022
This theorem is referenced by:  qustriv  33311
  Copyright terms: Public domain W3C validator