![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qusxpid | Structured version Visualization version GIF version |
Description: The Group quotient equivalence relation for the whole group is the cartesian product, i.e. all elements are in the same equivalence class. (Contributed by Thierry Arnoux, 16-Jan-2024.) |
Ref | Expression |
---|---|
qustriv.1 | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
qusxpid | ⊢ (𝐺 ∈ Grp → (𝐺 ~QG 𝐵) = (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qustriv.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | 1 | subgid 18993 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
3 | eqid 2733 | . . . 4 ⊢ (𝐺 ~QG 𝐵) = (𝐺 ~QG 𝐵) | |
4 | 1, 3 | eqger 19043 | . . 3 ⊢ (𝐵 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐵) Er 𝐵) |
5 | errel 8700 | . . 3 ⊢ ((𝐺 ~QG 𝐵) Er 𝐵 → Rel (𝐺 ~QG 𝐵)) | |
6 | 2, 4, 5 | 3syl 18 | . 2 ⊢ (𝐺 ∈ Grp → Rel (𝐺 ~QG 𝐵)) |
7 | relxp 5690 | . . 3 ⊢ Rel (𝐵 × 𝐵) | |
8 | 7 | a1i 11 | . 2 ⊢ (𝐺 ∈ Grp → Rel (𝐵 × 𝐵)) |
9 | df-3an 1090 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵)) | |
10 | simpl 484 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Grp) | |
11 | eqid 2733 | . . . . . . . . 9 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
12 | 1, 11 | grpinvcl 18859 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
13 | 12 | adantrr 716 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
14 | simprr 772 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
15 | eqid 2733 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
16 | 1, 15 | grpcl 18814 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵) |
17 | 10, 13, 14, 16 | syl3anc 1372 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵) |
18 | 17 | ex 414 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵)) |
19 | 18 | pm4.71d 563 | . . . 4 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵))) |
20 | 9, 19 | bitr4id 290 | . . 3 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
21 | ssid 4002 | . . . 4 ⊢ 𝐵 ⊆ 𝐵 | |
22 | 1, 11, 15, 3 | eqgval 19042 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ⊆ 𝐵) → (𝑥(𝐺 ~QG 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵))) |
23 | 21, 22 | mpan2 690 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑥(𝐺 ~QG 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵))) |
24 | brxp 5720 | . . . 4 ⊢ (𝑥(𝐵 × 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) | |
25 | 24 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑥(𝐵 × 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
26 | 20, 23, 25 | 3bitr4d 311 | . 2 ⊢ (𝐺 ∈ Grp → (𝑥(𝐺 ~QG 𝐵)𝑦 ↔ 𝑥(𝐵 × 𝐵)𝑦)) |
27 | 6, 8, 26 | eqbrrdv 5788 | 1 ⊢ (𝐺 ∈ Grp → (𝐺 ~QG 𝐵) = (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ⊆ wss 3946 class class class wbr 5144 × cxp 5670 Rel wrel 5677 ‘cfv 6535 (class class class)co 7396 Er wer 8688 Basecbs 17131 +gcplusg 17184 Grpcgrp 18806 invgcminusg 18807 SubGrpcsubg 18985 ~QG cqg 18987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-er 8691 df-en 8928 df-dom 8929 df-sdom 8930 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-nn 12200 df-2 12262 df-sets 17084 df-slot 17102 df-ndx 17114 df-base 17132 df-ress 17161 df-plusg 17197 df-0g 17374 df-mgm 18548 df-sgrp 18597 df-mnd 18613 df-grp 18809 df-minusg 18810 df-subg 18988 df-eqg 18990 |
This theorem is referenced by: qustriv 32438 |
Copyright terms: Public domain | W3C validator |