![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qusxpid | Structured version Visualization version GIF version |
Description: The Group quotient equivalence relation for the whole group is the cartesian product, i.e. all elements are in the same equivalence class. (Contributed by Thierry Arnoux, 16-Jan-2024.) |
Ref | Expression |
---|---|
qustriv.1 | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
qusxpid | ⊢ (𝐺 ∈ Grp → (𝐺 ~QG 𝐵) = (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qustriv.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | 1 | subgid 18935 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
3 | eqid 2733 | . . . 4 ⊢ (𝐺 ~QG 𝐵) = (𝐺 ~QG 𝐵) | |
4 | 1, 3 | eqger 18985 | . . 3 ⊢ (𝐵 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐵) Er 𝐵) |
5 | errel 8660 | . . 3 ⊢ ((𝐺 ~QG 𝐵) Er 𝐵 → Rel (𝐺 ~QG 𝐵)) | |
6 | 2, 4, 5 | 3syl 18 | . 2 ⊢ (𝐺 ∈ Grp → Rel (𝐺 ~QG 𝐵)) |
7 | relxp 5652 | . . 3 ⊢ Rel (𝐵 × 𝐵) | |
8 | 7 | a1i 11 | . 2 ⊢ (𝐺 ∈ Grp → Rel (𝐵 × 𝐵)) |
9 | df-3an 1090 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵)) | |
10 | simpl 484 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Grp) | |
11 | eqid 2733 | . . . . . . . . 9 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
12 | 1, 11 | grpinvcl 18803 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
13 | 12 | adantrr 716 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
14 | simprr 772 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
15 | eqid 2733 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
16 | 1, 15 | grpcl 18761 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵) |
17 | 10, 13, 14, 16 | syl3anc 1372 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵) |
18 | 17 | ex 414 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵)) |
19 | 18 | pm4.71d 563 | . . . 4 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵))) |
20 | 9, 19 | bitr4id 290 | . . 3 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
21 | ssid 3967 | . . . 4 ⊢ 𝐵 ⊆ 𝐵 | |
22 | 1, 11, 15, 3 | eqgval 18984 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ⊆ 𝐵) → (𝑥(𝐺 ~QG 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵))) |
23 | 21, 22 | mpan2 690 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑥(𝐺 ~QG 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵))) |
24 | brxp 5682 | . . . 4 ⊢ (𝑥(𝐵 × 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) | |
25 | 24 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑥(𝐵 × 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
26 | 20, 23, 25 | 3bitr4d 311 | . 2 ⊢ (𝐺 ∈ Grp → (𝑥(𝐺 ~QG 𝐵)𝑦 ↔ 𝑥(𝐵 × 𝐵)𝑦)) |
27 | 6, 8, 26 | eqbrrdv 5750 | 1 ⊢ (𝐺 ∈ Grp → (𝐺 ~QG 𝐵) = (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ⊆ wss 3911 class class class wbr 5106 × cxp 5632 Rel wrel 5639 ‘cfv 6497 (class class class)co 7358 Er wer 8648 Basecbs 17088 +gcplusg 17138 Grpcgrp 18753 invgcminusg 18754 SubGrpcsubg 18927 ~QG cqg 18929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-sets 17041 df-slot 17059 df-ndx 17071 df-base 17089 df-ress 17118 df-plusg 17151 df-0g 17328 df-mgm 18502 df-sgrp 18551 df-mnd 18562 df-grp 18756 df-minusg 18757 df-subg 18930 df-eqg 18932 |
This theorem is referenced by: qustriv 32199 |
Copyright terms: Public domain | W3C validator |