![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qusxpid | Structured version Visualization version GIF version |
Description: The Group quotient equivalence relation for the whole group is the cartesian product, i.e. all elements are in the same equivalence class. (Contributed by Thierry Arnoux, 16-Jan-2024.) |
Ref | Expression |
---|---|
qustriv.1 | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
qusxpid | ⊢ (𝐺 ∈ Grp → (𝐺 ~QG 𝐵) = (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qustriv.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | 1 | subgid 19002 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
3 | eqid 2732 | . . . 4 ⊢ (𝐺 ~QG 𝐵) = (𝐺 ~QG 𝐵) | |
4 | 1, 3 | eqger 19052 | . . 3 ⊢ (𝐵 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐵) Er 𝐵) |
5 | errel 8708 | . . 3 ⊢ ((𝐺 ~QG 𝐵) Er 𝐵 → Rel (𝐺 ~QG 𝐵)) | |
6 | 2, 4, 5 | 3syl 18 | . 2 ⊢ (𝐺 ∈ Grp → Rel (𝐺 ~QG 𝐵)) |
7 | relxp 5693 | . . 3 ⊢ Rel (𝐵 × 𝐵) | |
8 | 7 | a1i 11 | . 2 ⊢ (𝐺 ∈ Grp → Rel (𝐵 × 𝐵)) |
9 | df-3an 1089 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵)) | |
10 | simpl 483 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Grp) | |
11 | eqid 2732 | . . . . . . . . 9 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
12 | 1, 11 | grpinvcl 18868 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
13 | 12 | adantrr 715 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
14 | simprr 771 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
15 | eqid 2732 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
16 | 1, 15 | grpcl 18823 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵) |
17 | 10, 13, 14, 16 | syl3anc 1371 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵) |
18 | 17 | ex 413 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵)) |
19 | 18 | pm4.71d 562 | . . . 4 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵))) |
20 | 9, 19 | bitr4id 289 | . . 3 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
21 | ssid 4003 | . . . 4 ⊢ 𝐵 ⊆ 𝐵 | |
22 | 1, 11, 15, 3 | eqgval 19051 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ⊆ 𝐵) → (𝑥(𝐺 ~QG 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵))) |
23 | 21, 22 | mpan2 689 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑥(𝐺 ~QG 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑦) ∈ 𝐵))) |
24 | brxp 5723 | . . . 4 ⊢ (𝑥(𝐵 × 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) | |
25 | 24 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑥(𝐵 × 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
26 | 20, 23, 25 | 3bitr4d 310 | . 2 ⊢ (𝐺 ∈ Grp → (𝑥(𝐺 ~QG 𝐵)𝑦 ↔ 𝑥(𝐵 × 𝐵)𝑦)) |
27 | 6, 8, 26 | eqbrrdv 5791 | 1 ⊢ (𝐺 ∈ Grp → (𝐺 ~QG 𝐵) = (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⊆ wss 3947 class class class wbr 5147 × cxp 5673 Rel wrel 5680 ‘cfv 6540 (class class class)co 7405 Er wer 8696 Basecbs 17140 +gcplusg 17193 Grpcgrp 18815 invgcminusg 18816 SubGrpcsubg 18994 ~QG cqg 18996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-subg 18997 df-eqg 18999 |
This theorem is referenced by: qustriv 32464 |
Copyright terms: Public domain | W3C validator |