Step | Hyp | Ref
| Expression |
1 | | erth.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 Er 𝑋) |
2 | 1 | ersymb 8512 |
. . . . . . 7
⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
3 | 2 | biimpa 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝐵𝑅𝐴) |
4 | 1 | ertr 8513 |
. . . . . . 7
⊢ (𝜑 → ((𝐵𝑅𝐴 ∧ 𝐴𝑅𝑥) → 𝐵𝑅𝑥)) |
5 | 4 | impl 456 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐵𝑅𝐴) ∧ 𝐴𝑅𝑥) → 𝐵𝑅𝑥) |
6 | 3, 5 | syldanl 602 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝑥) → 𝐵𝑅𝑥) |
7 | 1 | ertr 8513 |
. . . . . 6
⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝑥) → 𝐴𝑅𝑥)) |
8 | 7 | impl 456 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝑥) → 𝐴𝑅𝑥) |
9 | 6, 8 | impbida 798 |
. . . 4
⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → (𝐴𝑅𝑥 ↔ 𝐵𝑅𝑥)) |
10 | | vex 3436 |
. . . . 5
⊢ 𝑥 ∈ V |
11 | | erth.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
12 | 11 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ 𝑋) |
13 | | elecg 8541 |
. . . . 5
⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) |
14 | 10, 12, 13 | sylancr 587 |
. . . 4
⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) |
15 | | errel 8507 |
. . . . . . 7
⊢ (𝑅 Er 𝑋 → Rel 𝑅) |
16 | 1, 15 | syl 17 |
. . . . . 6
⊢ (𝜑 → Rel 𝑅) |
17 | | brrelex2 5641 |
. . . . . 6
⊢ ((Rel
𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) |
18 | 16, 17 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) |
19 | | elecg 8541 |
. . . . 5
⊢ ((𝑥 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑥)) |
20 | 10, 18, 19 | sylancr 587 |
. . . 4
⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → (𝑥 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑥)) |
21 | 9, 14, 20 | 3bitr4d 311 |
. . 3
⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝑥 ∈ [𝐵]𝑅)) |
22 | 21 | eqrdv 2736 |
. 2
⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → [𝐴]𝑅 = [𝐵]𝑅) |
23 | 1 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝑅 Er 𝑋) |
24 | 1, 11 | erref 8518 |
. . . . . . 7
⊢ (𝜑 → 𝐴𝑅𝐴) |
25 | 24 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑅𝐴) |
26 | 11 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ 𝑋) |
27 | | elecg 8541 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐴)) |
28 | 26, 26, 27 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐴)) |
29 | 25, 28 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ [𝐴]𝑅) |
30 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅) |
31 | 29, 30 | eleqtrd 2841 |
. . . 4
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ [𝐵]𝑅) |
32 | 23, 30 | ereldm 8546 |
. . . . . 6
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) |
33 | 26, 32 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐵 ∈ 𝑋) |
34 | | elecg 8541 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
35 | 26, 33, 34 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
36 | 31, 35 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐵𝑅𝐴) |
37 | 23, 36 | ersym 8510 |
. 2
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑅𝐵) |
38 | 22, 37 | impbida 798 |
1
⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |