MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erth Structured version   Visualization version   GIF version

Theorem erth 8728
Description: Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
erth.1 (𝜑𝑅 Er 𝑋)
erth.2 (𝜑𝐴𝑋)
Assertion
Ref Expression
erth (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))

Proof of Theorem erth
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 erth.1 . . . . . . . 8 (𝜑𝑅 Er 𝑋)
21ersymb 8688 . . . . . . 7 (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))
32biimpa 476 . . . . . 6 ((𝜑𝐴𝑅𝐵) → 𝐵𝑅𝐴)
41ertr 8689 . . . . . . 7 (𝜑 → ((𝐵𝑅𝐴𝐴𝑅𝑥) → 𝐵𝑅𝑥))
54impl 455 . . . . . 6 (((𝜑𝐵𝑅𝐴) ∧ 𝐴𝑅𝑥) → 𝐵𝑅𝑥)
63, 5syldanl 602 . . . . 5 (((𝜑𝐴𝑅𝐵) ∧ 𝐴𝑅𝑥) → 𝐵𝑅𝑥)
71ertr 8689 . . . . . 6 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝑥) → 𝐴𝑅𝑥))
87impl 455 . . . . 5 (((𝜑𝐴𝑅𝐵) ∧ 𝐵𝑅𝑥) → 𝐴𝑅𝑥)
96, 8impbida 800 . . . 4 ((𝜑𝐴𝑅𝐵) → (𝐴𝑅𝑥𝐵𝑅𝑥))
10 vex 3454 . . . . 5 𝑥 ∈ V
11 erth.2 . . . . . 6 (𝜑𝐴𝑋)
1211adantr 480 . . . . 5 ((𝜑𝐴𝑅𝐵) → 𝐴𝑋)
13 elecg 8718 . . . . 5 ((𝑥 ∈ V ∧ 𝐴𝑋) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
1410, 12, 13sylancr 587 . . . 4 ((𝜑𝐴𝑅𝐵) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
15 errel 8683 . . . . . . 7 (𝑅 Er 𝑋 → Rel 𝑅)
161, 15syl 17 . . . . . 6 (𝜑 → Rel 𝑅)
17 brrelex2 5695 . . . . . 6 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
1816, 17sylan 580 . . . . 5 ((𝜑𝐴𝑅𝐵) → 𝐵 ∈ V)
19 elecg 8718 . . . . 5 ((𝑥 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
2010, 18, 19sylancr 587 . . . 4 ((𝜑𝐴𝑅𝐵) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
219, 14, 203bitr4d 311 . . 3 ((𝜑𝐴𝑅𝐵) → (𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑅))
2221eqrdv 2728 . 2 ((𝜑𝐴𝑅𝐵) → [𝐴]𝑅 = [𝐵]𝑅)
231adantr 480 . . 3 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝑅 Er 𝑋)
241, 11erref 8694 . . . . . . 7 (𝜑𝐴𝑅𝐴)
2524adantr 480 . . . . . 6 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑅𝐴)
2611adantr 480 . . . . . . 7 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑋)
27 elecg 8718 . . . . . . 7 ((𝐴𝑋𝐴𝑋) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
2826, 26, 27syl2anc 584 . . . . . 6 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
2925, 28mpbird 257 . . . . 5 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ [𝐴]𝑅)
30 simpr 484 . . . . 5 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅)
3129, 30eleqtrd 2831 . . . 4 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ [𝐵]𝑅)
3223, 30ereldm 8727 . . . . . 6 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴𝑋𝐵𝑋))
3326, 32mpbid 232 . . . . 5 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐵𝑋)
34 elecg 8718 . . . . 5 ((𝐴𝑋𝐵𝑋) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
3526, 33, 34syl2anc 584 . . . 4 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
3631, 35mpbid 232 . . 3 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐵𝑅𝐴)
3723, 36ersym 8686 . 2 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑅𝐵)
3822, 37impbida 800 1 (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450   class class class wbr 5110  Rel wrel 5646   Er wer 8671  [cec 8672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-er 8674  df-ec 8676
This theorem is referenced by:  erth2  8729  erthi  8730  qliftfun  8778  eroveu  8788  eceqoveq  8798  enreceq  11026  prsrlem1  11032  ercpbllem  17518  eqg0el  19122  orbsta  19252  sylow2blem3  19559  qusecsub  19772  frgpnabllem2  19811  rngqipring1  21233  zndvds  21466  qustgpopn  24014  qustgphaus  24017  pi1xfrf  24960  pi1cof  24966  tgjustr  28408  rlocf1  33231  fracfld  33265  qusvscpbl  33329  nsgqusf1olem3  33393  qsnzr  33433  zringfrac  33532  pstmxmet  33894  sconnpi1  35233  topfneec2  36351
  Copyright terms: Public domain W3C validator