Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  epelon2 Structured version   Visualization version   GIF version

Theorem epelon2 42272
Description: Over the ordinal numbers, one may define the relation 𝐴 E 𝐵 iff 𝐴𝐵 and one finds that, under this ordering, On is a well-ordered class, see epweon 7762. This is a weak form of epelg 5582 which only requires that we know 𝐵 to be a set. (Contributed by RP, 27-Sep-2023.)
Assertion
Ref Expression
epelon2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵𝐴𝐵))

Proof of Theorem epelon2
StepHypRef Expression
1 epelg 5582 . 2 (𝐵 ∈ On → (𝐴 E 𝐵𝐴𝐵))
21adantl 483 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107   class class class wbr 5149   E cep 5580  Oncon0 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-eprel 5581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator