![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > epelon2 | Structured version Visualization version GIF version |
Description: Over the ordinal numbers, one may define the relation 𝐴 E 𝐵 iff 𝐴 ∈ 𝐵 and one finds that, under this ordering, On is a well-ordered class, see epweon 7810. This is a weak form of epelg 5600 which only requires that we know 𝐵 to be a set. (Contributed by RP, 27-Sep-2023.) |
Ref | Expression |
---|---|
epelon2 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epelg 5600 | . 2 ⊢ (𝐵 ∈ On → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
2 | 1 | adantl 481 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 E cep 5598 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |