Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  epelon2 Structured version   Visualization version   GIF version

Theorem epelon2 43517
Description: Over the ordinal numbers, one may define the relation 𝐴 E 𝐵 iff 𝐴𝐵 and one finds that, under this ordering, On is a well-ordered class, see epweon 7754. This is a weak form of epelg 5542 which only requires that we know 𝐵 to be a set. (Contributed by RP, 27-Sep-2023.)
Assertion
Ref Expression
epelon2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵𝐴𝐵))

Proof of Theorem epelon2
StepHypRef Expression
1 epelg 5542 . 2 (𝐵 ∈ On → (𝐴 E 𝐵𝐴𝐵))
21adantl 481 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5110   E cep 5540  Oncon0 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-eprel 5541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator