| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > epelon2 | Structured version Visualization version GIF version | ||
| Description: Over the ordinal numbers, one may define the relation 𝐴 E 𝐵 iff 𝐴 ∈ 𝐵 and one finds that, under this ordering, On is a well-ordered class, see epweon 7703. This is a weak form of epelg 5515 which only requires that we know 𝐵 to be a set. (Contributed by RP, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| epelon2 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epelg 5515 | . 2 ⊢ (𝐵 ∈ On → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | 1 | adantl 481 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2110 class class class wbr 5089 E cep 5513 Oncon0 6302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-eprel 5514 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |